PolySpace® Products for C++ 7
User’s Guide

‘\The MathWorks™

Accelorating the poce of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
PolySpace® Products for C++ User’s Guide
© COPYRIGHT 1999-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2008 Online Only Revised for Version 5.1 (Release 2008a)
October 2008 Online Only Revised for Version 6.0 (Release 2008b)
March 2009 Online Only Revised for Version 7.0 (Release 2009a)

September 2009 Online Only Revised for Version 7.1 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Introduction to PolySpace Products

Introduction to PolySpace Products
The Value of PolySpace Verification
How PolySpace Verification Works
Product Componentscc i,
Installing PolySpace Products
Related Products 0.,

PolySpace Documentation
AboutthisGuidettt
Related Documentation

1-2
1-2
1-4
1-6
1-6

1-8
1-8
1-8

How to Use PolySpace Software

2|

PolySpace Verification and the Software Development
Cycle ...
Software Quality and Productivity
Best Practices for Verification Workflow

Implementing a Process for PolySpace Verification ...
Overview of the PolySpace Process
Defining Quality Objectivesccouiiuneenn.
Defining a Verification Process to Meet Your Objectives ..
Applying Your Verification Process to Assess Code

Qualityiiiii e e
Improving Your Verification Process

Sample Workflows for PolySpace Verification
Overview of Verification Workflows
Software Developers — Standard Development Process
Software Developers — Rigorous Development Process

2-2
2-2
2-3

2-4
2-4
2-5
2-10

2-11
2-11

2-12
2-12
2-13
2-16

iii

Quality Engineers — Code Acceptance Criteria 2-20
Quality Engineers — Certification/Qualification 2-23
Model-Based Design Users — Verifying Generated Code .. 2-25
Project Managers — Integrating PolySpace Verification

with Configuration Management Tools 2-29

PolySpace Class Analyzer

3

Analyzing C++ Classescciiiiinineeennnn. 3-2
OVeIVIEW o ittt ettt ettt e 3-2
Why Provide a Class Analyzer 3-2

How the Class Analyzer Works 3-3
OVeIVIEW o ittt ettt ettt e e e 3-3
Sources tobe Verified 3-4
Architecture of the Generated main 3-4
LogFile 3-5
Characteristics of a Class and Messages in the Log File .. 3-6
Behavior of Global variables and members 3-6
Methods and Class Specificities 3-9

TypesofClassescciiiiiiiiiinnnnn. 3-12
Simple Classot 3-12
Simple Inheritance, 3-14
Multiple Inheritance, 3-15
Abstract Classesiiiiiiiiiiii 3-16
Virtual Inheritance iiiiinnn... 3-17
Other Typesof Classescciiiiiinnenneennnan. 3-18

Setting Up a Verification Project

4

Creating a Project 4-2
What Is a Project? 4-2
Project Directoriescouuiiiiiiiinnnnn. 4-3

iv Contents

Opening PolySpace Launcher
Specifying Default Directory
Creating New Projects
Opening Existing Projects,
Specifying Source Files
Specifying Include Directories
Specifying Results Directory
Specifying Analysis Optionscovviieeneeenn...
Configuring Text and XML Editors
Saving the Project,

Specifying Options to Match Your Quality
Objectives i e e
Quality Objectives OVerviewo.oeeeeeeeeennnn.
Choosing Contextual Verification Options
Choosing Strict or Permissive Verification Options
Choosing Coding Rules

Setting Up Project to Check Coding Rules
PolySpace JSF C++ Checker Overview
Checking Compliance with JSF++ Coding Rules
Creating a JSF++ RulesFile
Excluding Files from JSF++ Checking

Setting Up Project for Generic Target Processors
Project Model Files
Creating Project Model Files
Viewing Existing Generic Targets
Defining Generic Targets
Deleting a Generic Target
Common Generic Targets,
Creating a Configuration File from a PolySpace Project

Model File i,

4-3
4-6
4-7
4-8
4-9
4-11
4-13
4-14
4-15
4-16

Emulating Your Runtime Environment

5

Setting UpaTargetcc0 i,
Target/Compiler Overviewcccuuuuuunnn.

Specifying Target/Compilation Parameters 5-2
Predefined Target Processor Specifications (size of char, int,

float, double...) i 5-3
Generic Target Processorscciiiiiii... 5-5
Compiling Operating System Dependent Code (OS-target

ISSUELS) v vttt ittt et e 5-5
Ignoring or Replacing Keywords Before Compilation 5-9
How to Gather Compilation Options Efficiently 5-12

Applying Data Ranges to External Variables and Stub

Functions (DRS) 5-14
Overview of Data Range Specifications (DRS) 5-14
Specifying Data Ranges 5-14
File Format 5-15
Variable Scope 5-17
Performing Efficient Module Testing with DRS 5-19
Reducing Oranges with DRS 5-20

Preparing Source Code for Verification

6

Stubbing 6-2
Stubbing Overviewc.iiiiiiiin 6-2
Manual vs. Automatic Stubbing 6-2
Deciding which Stub Functions to Provide 6-3
Stubbing Examples, 6-6
Specifying Call Sequenceccoiiiiiieeeo... 6-8
Constraining Data with Stubbing 6-9
Recoding Specific Functions 6-12

Preparing Code for Variables 6-15
How are Variables Initialized 6-15
Dataand CodingRules 6-16
Variables: Declaration and Definition 6-16
How Can I Model Variable Values External to My

Application? e 6-17

Preparing Code for Built-in Functions 6-19

L0 =) T 1= 6-19

vi Contents

Stubs of stl Functions 6-19

Stubs of libc Functions 6-19
Types Promotionccciiiuun.. 6-21
Unsigned Types Promoted to Signed 6-21
Promotion Rules in Operators 6-22

7

Types of Verification 7-2
Running Verifications on PolySpace Server 7-3
Starting Server Verification 7-3
What Happens When You Run Verification 7-4
Running Verification Unit-by-Unit 7-5
Managing Verification Jobs Using the PolySpace Queue
Manageroiiiiii e 7-7
Monitoring Progress of Server Verification 7-8
Viewing Verification Log File on Server 7-11
Stopping Server Verification Before It Completes 7-13
Removing Verification Jobs from Server Before They
Run ... 7-14
Changing Order of Verification Jobs in Server Queue 7-15
Purging Server Queue 7-16
Changing Queue Manager Password 7-17
Sharing Server Verifications Between Users 7-18
Running Verifications on PolySpace Client 7-22
Starting Verificationon Client 7-22
What Happens When You Run Verification 7-23
Monitoring the Progress of the Verification 7-24
Stopping Client Verification Before It Completes 7-25
Running Verifications from Command Line 7-27
Launching Verificationsin Batch 7-27
Managing Verificationsin Batch 7-27

vii

viii

Contents

Troubleshooting Verification Problems

8|

Verification Process Failed Errors 8-2
OVeIVIEW &ttt ittt e e e 8-2
Hardware Does Not Meet Requirements 8-2
You Did Not Specify the Location of Included Files 8-2
PolySpace Software Cannot Find the Server 8-3
Limit on Assignments and Function Calls 8-4

Compile Errors 8-6
L 7<) T =X 8-6
Examining the Compile Log 8-6
Includes e 8-8
Specific Keyword or Extended Keyword 8-8
Initialization of Global Variables 8-10

DialectIssues iiiiinnnnn. 8-12
ISO versus Default Dialects 8-12
CFront2 and CFront3 Dialects 8-14
Visual Dialects 8-15
GNUDialect ... e e e 8-17

Link Messagesuiiiiiiiiiii .. 8-21
STL Library C++ Stubbing Errors 8-21
Lib C Stubbing Errorsc.ciiiiiinnnennn. 8-22

Troubleshooting Using the Preprocessed .ci Files 8-25

OVeIVIBW & ittt ettt ettt e e e 8-25
ExampleofciFile 8-25
Troubleshooting Methodology 8-27
Reducing Verification Time 8-30
Factors Impacting Verification Time 8-30
Displaying Verification Status Information 8-31
Techniques for Improving Verification Performance 8-32
Turning Antivirus Software Off 8-35
Tuning PolySpace Parameters 8-35
Subdividing Code it 8-36
Reducing Procedure Complexity 8-46
Reducing Task Complexity, 8-47

Obtaining Configuration Information

Removing Preliminary Results Files

Reducing Variable Complexity
Choosing Lower Precisioncccvuuiioo.. ..

Reviewing Verification Results

2

Before You Review PolySpace Results
Overview: Understanding PolySpace Results
Why Gray Follows Red and Green Follows Orange
The Message and What It Means
The C++ Explanation

Opening Verification Results
Downloading Results from Server to Client
Downloading Results to UNIX or Linux Clients
Downloading Results from Unit-by-Unit Verifications
Opening Verification Results
Exploring the Viewer Window
Selecting Viewer Mode,
Setting Character Encoding Preferences

Reviewing Results in Assistant Mode
What Is Assistant Mode?cccv ...
Switching to Assistant Mode
Selecting the Methodology and Criterion Level
Exploring Methodology for C++
Defining a Custom Methodology
Reviewing Checks
Saving Review Commentsccvvvvo....

Reviewing Results in Expert Mode
What Is Expert Mode? 0.,
Switching to Expert Mode
Selecting a ChecktoReview

9-2
9-3
9-4
9-5

9-8

9-8
9-11
9-12
9-12
9-13
9-17
9-17

9-20
9-20
9-20
9-21
9-22
9-24
9-25
9-27

9-28
9-28
9-28
9-29

ix

Displaying the Call Sequence for a Check 9-31

Displaying the Access Sequence for Variables 9-32
Tracking Review Progress 9-33
Making the Reviewed Column Visible 9-35
Filtering Checks 9-37
Typesof Filtersccoiiiiii .. 9-37
Creating a Custom Filter 9-39
Saving Review Commentsccouv.... 9-40
Importing and Exporting Review Comments 9-41
Reusing Review Comments 9-41
Exporting Review Comments to Other Verification
Results ... i e 9-41
Importing Review Comments from Previous
Verificationsc.oiiiiiiieiinniinnne.. 9-42
Generating Reports of Verification Results 9-44
PolySpace Report Generator Overview 9-44
Generating Verification Reports 9-45
Automatically Generating Verification Reports 9-46
Generating Excel Reports 9-47
Using PolySpace Results 9-51
Review Runtime Errors: Fix Red Errors 9-51
Using Range Information in the Viewer 9-52
Red Checks Where Gray Checks were Expected 9-57
Potential Side Effect of a Red Error 9-59
Why Review Dead Code Checks 9-60
Reviewing Orange Checks 9-62
Integration Bug Tracking 9-62

Managing Orange Checks

10

Understanding Orange Checks 10-2
What is an Orange Check? 10-2
Sources of Orange Checkscciiiii... 10-6

Too Many Orange Checks? 10-9

X Contents

Do I Have Too Many Orange Checks? 10-9

How to Manage Orange Checks 10-10
Reducing Orange Checks in Your Results 10-11
Overview: Reducing Orange Checks 10-11
Applying Coding Rules to Reduce Orange Checks 10-12
Improving Verification Precision 10-12
Stubbing Parts of the Code Manually 10-19
Considering Contextual Verification 10-22
Considering the Effects of Application Code Size 10-23
Reviewing Orange Checks 10-24
Overview: Reviewing Orange Checks 10-24
Defining Your Review Methodology 10-24
Performing Selective Orange Review 10-26
Importing Review Comments from Previous
Verificationsc.oiiiiiiiie i, 10-28
Performing an Exhaustive Orange Review 10-29

PolySpace In One Click Overview 11-2
Using PolySpace InOne Click 11-3
PolySpace In One Click Workflow 11-3
Setting the Active Project 11-3
Launching Verification 11-5
Using the TaskbarIcon 11-8

12

PolySpace JSF C++ Checker Overview 12-2

xi

xii

Contents

Using the PolySpace JSF C++ Checker 12-3

Setting Up JSF++ Checkingcouiiivi... 12-3
Running a Verification with JSF++ Checking 12-7
Supported Rules 12-11
Code Size and Complexityc.ciiiiineneeeen.. 12-12
Environment 12-12
Libraries i 12-13
Pre-Processing Directives, 12-14
Header Files i, 12-15
172 (= 12-15
Clas8eS ittt e 12-19
Namespacesttt 12-23
Templates e e e e 12-23
Functions 12-23
Comments ittt e 12-25
Declarations and Definitions 12-25
Initialization 12-26
PSS vttt e 12-27
Constantst e 12-27
Variables ... e 12-27
Unionsand BitFields 12-28
OPEratOrS v vttt e 12-28
Pointers and References 12-30
Type CONnVerSIONS .. vvvviiiieeee e 12-31
Flow Control Standardscccuviii... 12-32
Expressions e 12-33
Memory Allocation0iiiiiinnnnnnn.. 12-35
Fault Handling 12-35
Portable Code0 12-35
Rules NotChecked 12-36
Code Size and Complexityc.ciiiiinnneeennn.. 12-37
Rules 12-37
Environment 12-37
Libraries 12-38
Header Files i, 12-38
172 (= 12-38
ClasSeS ittt e 12-39
Namespacesttt 12-40
Templatest e e e e 12-41
Functions 12-41
Comments ittt e 12-42

Initializationt e 12-42

PSS v i i e 12-43
Unionsand BitFields 12-43
OPEratOrS vttt e 12-43
Type CONnVErSIONS ... vviiiieeee et eeennnnnnnns 12-43
Expressions e 12-43
Memory Allocation0iiiiiiinnnnnn.. 12-44
Portable Code0 12-44
Efficiency Considerationsccuviieeeoo... 12-44
Miscellaneousooiiiiiiii e 12-45
st ..t e 12-45

Using PolySpace Software in Visual Studio

13

Verifying Code in Visual Studio 13-2
Creating a Visual Studio Project 13-4
Setting Up and Starting a PolySpace Verification in Visual

StUdIo oo e e e 13-5
Monitoring a Verification 13-13
Reviewing Verification Results in Visual Studio 13-15
Using the PolySpace Spooler 13-15

Using PolySpace Software in the Eclipse IDE

14

Verifying Code in the EclipseIDE 14-2
Creating an Eclipse Project 14-3
Setting Up PolySpace Verification with Eclipse Editor ... 14-4
Launching Verification from Eclipse Editor 14-6
Reviewing Verification Results from Eclipse Editor 14-6
Using the PolySpace Spooler 14-7

xiii

Glossary

Index

xiv Contents

Introduction to PolySpace
Products

® “Introduction to PolySpace Products” on page 1-2

® “PolySpace Documentation” on page 1-8

Introduction to PolySpace® Products

1-2

Introduction to PolySpace Products

In this section...

“The Value of PolySpace Verification” on page 1-2
“How PolySpace Verification Works” on page 1-4
“Product Components” on page 1-6

“Installing PolySpace Products” on page 1-6

“Related Products” on page 1-6

The Value of PolySpace Verification

PolySpace® products verify C, C++, and Ada code by detecting run-time errors
before code is compiled and executed. PolySpace verification uses formal
methods not only to detect errors, but to prove mathematically that certain
classes of run-time errors do not exist.

PolySpace verification can help you to:

e “Ensure Software Reliability” on page 1-2
® “Decrease Development Time” on page 1-3

* “Improve the Development Process” on page 1-4

Ensure Software Reliability

PolySpace software ensures the reliability of your C++ applications by proving
code correctness and identifying run-time errors. Using advanced verification
techniques, PolySpace software performs an exhaustive verification of your
source code.

Because PolySpace software verifies all possible executions of your code, it
can identify code that:

® Never has an error

® Always has an error

® Js unreachable

Introduction to PolySpace® Products

® Might have an error

With this information, you can be confident that you know how much of your
code is run-time error free, and you can improve the reliability of your code
by fixing the errors.

You can also improve the quality of your code by using PolySpace verification
software to check that your code complies with JSF C++ coding rules.

Decrease Development Time

PolySpace software reduces development time by automating the verification
process and helping you to efficiently review verification results. You can use
it at any point in the development process, but using it during early coding
phases allows you to find errors when it is less costly to fix them.

You use PolySpace software to verify C++ source code before compile time.
To verify the source code, you set up verification parameters in a project, run
the verification, and review the results. This process takes significantly less
time than using manual methods or using tools that require you to modify
code or run test cases.

A graphical user interface helps you to efficiently review verification results.
Results are color-coded:

¢ Green — Indicates code that never has an error.

®* Red — Indicates code that always has an error.

¢ Gray — Indicates unreachable code.

¢ Orange — Indicates unproven code (code that might have an error).

The color-coding helps you to quickly identify errors. You will spend less time

debugging because you can see the exact location of an error in the source
code. After you fix errors, you can easily run the verification again.

Using PolySpace verification software helps you to use your time effectively.

Because you know which parts of your code are error-free, you can focus on
the code that has definite errors or might have errors.

1-3

Introduction to PolySpace® Products

1-4

Reviewing the code that might have errors (orange code) can be
time-consuming, but PolySpace software helps you with the review process.
You can use filters to focus on certain types of errors or you can allow the
software to identify the code that you should review.

Improve the Development Process

PolySpace software makes it easy to share verification parameters and
results, allowing the development team to work together to improve product
reliability. Once verification parameters have been set up, developers can
reuse them for other files in the same application.

PolySpace verification software supports code verification throughout the
development process:

¢ An individual developer can find and fix run-time errors during the initial
coding phase.

® Quality assurance can check overall reliability of an application.

¢ Managers can monitor application reliability by generating reports from
the verification results.

How PolySpace Verification Works

PolySpace software uses static verification to prove the absence of runtime
errors. Static verification derives the dynamic properties of a program
without actually executing it. This differs significantly from other techniques,
such as runtime debugging, in that the verification it provides is not based on
a given test case or set of test cases. The dynamic properties obtained in the
PolySpace verification are true for all executions of the software.

What is Static Verification

Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. However, most
Static Verification tools only verify the complexity of the software, in a search
for constructs which may be potentially dangerous. PolySpace verification
provides deep-level verification identifying almost all runtime errors and
possible access conflicts on global shared data.

Introduction to PolySpace® Products

PolySpace verification works by approximating the software under
verification, using safe and representative approximations of software
operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++1i)
{ tab[i] = foo(1i);
}

To check that the variable I’ never overflows the range of 'tab’ a traditional
approach would be to enumerate each possible value of '1’. One thousand
checks would be needed.

Using the static verification approach, the variable 1’ is modelled by its
variation domain. For instance the model of '1’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,

the information that ’1’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of 1’ is smaller than the range of 'tab’. Only one check is required

to establish that - and hence the gain in efficiency compared to traditional
approaches.

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no runtime error (RTE) item
to be checked can be missed by PolySpace.

1-5

Introduction to PolySpace® Products

Product Components

The PolySpace products for verifying C++ code are combined with the
PolySpace products for verifying C++ code. These products are:

e “PolySpace® Client for C/C++ Software” on page 1-6
e “PolySpace® Server for C/C++ Software” on page 1-6

PolySpace Client for C/C++ Software

PolySpace Client software is the management and visualization tool of
PolySpace products. You use it to submit jobs for execution by PolySpace
Server, and to review verification results. The PolySpace Client software
includes the Viewer, DRS, JSF C++ Checker, and Report Generator features.

PolySpace client software is typically installed on developer workstations that
will send verification jobs to the PolySpace server.

PolySpace Server for C/C++ Software

PolySpace Server software is the computational engine of PolySpace products.
You use it to run jobs posted by PolySpace Clients, and to manage multiple
servers and queues. The PolySpace Server software includes the Remote
Launcher, Spooler, Report Generator, DRS, and HTML Generator features.

PolySpace Server software is typically installed on machines dedicated to
PolySpace software that will receive verifications coming from PolySpace
clients.

Installing PolySpace Products

For information on installing and licensing PolySpace products, refer to the
PolySpace Installation Guide.

Related Products

e “PolySpace Products for Verifying C Code” on page 1-7
e “PolySpace Products for Verifying Ada Code” on page 1-7
e “PolySpace Products for Linking to Models” on page 1-7

Introduction to PolySpace® Products

PolySpace Products for Verifying C Code

For information about PolySpace products that verify C code, see the following:
http://www.mathworks.com/products/polyspaceclientc/

http://www.mathworks.com/products/polyspaceserverc/

PolySpace Products for Verifying Ada Code

For information about PolySpace products that verify Ada code, see the
following:

http://www.mathworks.com/products/polyspaceclientada/

http://www.mathworks.com/products/polyspaceserverada/

PolySpace Products for Linking to Models

For information about PolySpace products that link to models, see the
following:

http://www.mathworks.com/products/polyspacemodelsl/

http://www.mathworks.com/products/polyspaceumlrh/

http://www.mathworks.com/products/polyspaceclientc/
http://www.mathworks.com/products/polyspaceserverc/
http://www.mathworks.com/products/polyspaceclientada/
http://www.mathworks.com/products/polyspaceserverada/
http://www.mathworks.com/products/polyspacemodelsl/
http://www.mathworks.com/products/polyspaceumlrh/

1 Introduction to PolySpace® Products

PolySpace Documentation

In this section...
“About this Guide” on page 1-8

“Related Documentation” on page 1-8

About this Guide

This document describes how to use PolySpace software to verify C++ code,
and provides detailed procedures for common tasks. It covers both PolySpace®
Client™ for C/C++ and PolySpace® Server™ for C/C++ products.

This guide is intended for both novice and experienced users.

Related Documentation

In addition to this guide, the following related documents are shipped with
the software:

e PolySpace Products for C++ Getting Started Guide — Provides a basic
workflow and step-by-step procedures for verifying C code using PolySpace
software, to help you quickly learn how to use the software.

® PolySpace Products for C++ Reference Guide — Provides detailed
descriptions of all PolySpace options, as well as all checks reported in the
PolySpace results.

® PolySpace Installation Guide — Describes how to install and license
PolySpace products.

® PolySpace Release Notes — Describes new features, bug fixes, and
upgrade issues.

You can access these guides from the Help menu, or by or clicking the Help
icon in the PolySpace window.

To access the online documentation for PolySpace products, go to:

/www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

http://www.mathworks.com/access/helpdesk/help/toolbox/polyspace/polyspace.html

PolySpace Documentation

The MathWorks Online

For additional information and support, see:

www.mathworks.com/products/polyspace

http://www.mathworks.com/products/polyspace/index.html?s_cid=HP_FP_PS_PolySpace

1 Introduction to PolySpace® Products

1-10

How to Use PolySpace
Software

e “PolySpace Verification and the Software Development Cycle” on page 2-2
¢ “Implementing a Process for PolySpace Verification” on page 2-4

e “Sample Workflows for PolySpace Verification” on page 2-12

2 How fo Use PolySpace® Software

2-2

PolySpace Verification and the Software Development

Cycle

In this section...

“Software Quality and Productivity” on page 2-2

“Best Practices for Verification Workflow” on page 2-3

Software Quality and Productivity

The goal of most software development teams is to maximize both quality and
productivity. However, when developing software, there are always three
related variables: cost, quality, and time.

Cost Time

Quality

Changing the requirements for one of these variables always impacts the
other two.

Generally, the criticality of your application determines the balance between
these three variables — your quality model. With classical testing processes,
development teams generally try to achieve their quality model by testing
all modules in an application until each meets the required quality level.
Unfortunately, this process often ends before quality objectives are met,
because the available time or budget has been exhausted.

PolySpace verification allows a different process. PolySpace verification can
support both productivity improvement and quality improvement at the same
time, although there is always a balance between these goals.

To achieve maximum quality and productivity, however, you cannot simply
perform code verification at the end of the development process. You must

integrate verification into your development process, in a way that respects
time and cost restrictions.

PolySpace Verification and the Software Development Cycle

This chapter describes how to integrate PolySpace verification into your
software development cycle. It explains both how to use PolySpace verification
in your current development process, and how to change your process to get
more out of verification.

Best Practices for Verification Workflow

PolySpace verification can be used throughout the software development
cycle. However, to maximize both quality and productivity, the most efficient
time to use it 1s early in the development cycle.

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

.
PolySpace®

Code Code
Analysis Verification

PolySpace Verification in the Development Cycle

Typically, verification is conducted in two stages. First, you verify code as it is
written, to check coding rules and quickly identify any obvious defects. Once
the code 1s stable, you verify it again before module/unit testing, with more
stringent verification and review criteria.

Using verification at this stage of the development cycle improves both quality
and productivity, because it allows you to find and manage defects soon after
the code is written. This saves time because each developer is familiar with
their own code, and can quickly determine why code cannot be proven safe. In
addition, defects are cheaper to fix at this stage, since they can be addressed
before the code is integrated into a larger system.

2-3

2 How fo Use PolySpace® Software

2-4

Implementing a Process for PolySpace Verification

In this section...

“Overview of the PolySpace Process” on page 2-4
“Defining Quality Objectives” on page 2-5
“Defining a Verification Process to Meet Your Objectives” on page 2-10

“Applying Your Verification Process to Assess Code Quality” on page 2-11

“Improving Your Verification Process” on page 2-11

Overview of the PolySpace Process

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve your own quality
goals. To do this, however, you must integrate PolySpace verification into
your development process.

To successfully implement polyspace verification within your development
process, you must perform each of the following steps:

1 Define your quality objectives.
2 Define a process to match your quality objectives.
3 Apply the process to assess the quality of your code.

4 Tmprove the process.

Implementing a Process for PolySpace Verification

Defining Quality Obijectives

Before you can verify whether your code meets your quality goals, you must
define those goals. Therefore, the first step in implementing a verification
process is to define your quality objectives.

This process involves:

® “Choosing Robustness or Contextual Verification” on page 2-5

“Choosing Coding Rules” on page 2-6

® “Choosing Strict or Permissive Verification Objectives” on page 2-7

“Defining Software Quality Levels” on page 2-7

Choosing Robustness or Contextual Verification

Before using PolySpace products to verify your code, you must decide what
type of software verification you want to perform. There are two approaches
to code verification that result in slightly different workflows:

* Robustness Verification — Prove software works under all conditions.

® Contextual Verification — Prove software works under normal working
conditions.

Note Some verification processes may incorporate both robustness and
contextual verification. For example, developers may perform robustness
verification on individual files early in the development cycle, while writing
the code. Later, the team may perform contextual verification on larger
software components.

Robustness Verification. Robustness verification proves that the software
works under all conditions, including “abnormal” conditions for which it was
not designed. This can be thought of as “worst case” verification.

By default, PolySpace software assumes you want to perform robustness
verification. In a robustness verification, PolySpace software:

® Assumes function inputs are full range

2-5

2 How fo Use PolySpace® Software

2-6

¢ Initializes global variables to full range

* Automatically stubs missing functions

While this approach ensures that the software works under all conditions,
it can lead to orange checks (unproven code) in your results. You must then
manually inspect these orange checks in accordance with your software
quality objectives.

Contextual Verification. Contextual verification proves that the software
works under predefined working conditions. This limits the scope of the
verification to specific variable ranges, and verifies the code within these
ranges.

When performing contextual verification, you use PolySpace options to reduce
the number of orange checks. For example, you can:

e Use Data Range Specifications (DRS) to specify the ranges for your
variables, thereby limiting the verification to these cases. For more
information, see “Applying Data Ranges to External Variables and Stub
Functions (DRS)”.

® (Create a detailed main program to model the call sequence, instead of
using the default main generator. For more information, see “Verifying

999y

an Application Without a “Main™”.

® Provide manual stubs that emulate the behavior of missing functions,
instead of using the default automatic stubs. For more information, see
“Stubbing”.

Choosing Coding Rules

Coding rules are one of the most efficient means to improve both the quality
of your code, and the quality of your verification results.

If your development team observes certain coding rules, the number of
orange checks (unproven code) in your verification results will be reduced
substantially. This means that there is less to review, and that the remaining
checks are more likely to represent actual bugs. This can make the cost of bug
detection much lower.

Implementing a Process for PolySpace Verification

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see “MISRA® Checker”.

Choosing Strict or Permissive Verification Objectives

While defining the quality objectives for your application, you should
determine which of these options you want to use.

Options that make verification more strict include:

e -detect-unsigned-overflows — Verification is more strict with
overflowing computations on unsigned integers.

® -wall — Specifies that all C compliance warnings are written to the log file
during compilation.

Options that make verification more permissive include:

® -allow-negative-operand-in-shift — Verification allows a shift
operation on a negative number.

® -ignore-constant-overflow — Verification is permissive with overflowing

computations on constants.

¢ -allow-undef-variables — Verification does not stop due to errors caused
by undefined global variables.

For more information on these options, see “Option Descriptions” in the
PolySpace Products for C Reference.

Defining Software Quality Levels

The software quality level you define determines which PolySpace options you
use, and which results you must review.

You define the quality levels appropriate for your application, from level QL-1

(lowest) to level QL-4 (highest). Each quality level consists of a set of software
quality criteria that represent a certain quality threshold. For example:

2-7

2 How fo Use PolySpace® Software

2-8

Software Quality Levels

Criteria Software Quality Levels
QL1 QL2 | QL3 | QL4

Document static information X X X X

Enforce coding rules with direct impact on X X X X

selectivity

Review all red checks X X X X

Review all gray checks X X X X

Review first criteria level for orange X X X

checks

Review second criteria level for orange X X

checks

Enforce coding rules with indirect impact X X

on selectivity

Perform dataflow analysis X X

Review third criteria level for orange X

checks

You define the quality criteria appropriate for your application. In the

example above, the quality criteria include:

e Static Information — Includes information about the application

architecture, the structure of each module, and all files. This information

must be documented to ensure that your application is fully verified.

¢ Coding rules — PolySpace software can check that your code complies
with specified coding rules. The section “Applying Coding Rules to Reduce
Orange Checks”defines two sets of coding rules — a first set with direct
impact on the selectivity of the verification, and a second set with indirect

impact on selectivity.

* Red checks — Represent errors that occur every time the code is executed.

® Gray checks — Represent unreachable code.

Implementing a Process for PolySpace Verification

® Orange checks — Indicate unproven code, meaning a run-time error may
occur. PolySpace software allows you to define three criteria levels for
reviewing orange checks in the PolySpace Viewer. For more information,
see “Reviewing Results in Assistant Mode”.

¢ Dataflow analysis — Identifies errors such as non-initialized variables and
variables that are written but never read. This can include inspection of:

= Application call tree
= Read/write accesses to global variables

= Shared variables and their associated concurrent access protection

2-9

2 How fo Use PolySpace® Software

2-10

Defining a Verification Process to Meet Your
Obijectives

Once you have defined your quality objectives, you must define a process that
allows you to meet those objectives. Defining the process involves actions both
within and outside PolySpace software.

These actions include:

® Setting standards for code development, such as coding rules.

e Setting PolySpace Analysis options to match your quality objectives. See
“Creating a Project”.

® Setting review criteria in the PolySpace Viewer to ensure results are
reviewed consistently. See “Defining a Custom Methodology”.

Implementing a Process for PolySpace Verification

Applying Your Verification Process to Assess Code
Quality

Once you have defined a process that meets your quality objectives, it is up to
your development team to apply it consistently to all software components.

This process includes:

1 Launching PolySpace verification on each software component as it is
written. See “Using PolySpace In One Click”.

2 Reviewing verification results consistently. See “Reviewing Results in
Assistant Mode”.

3 Saving review comments for each component, so they are available
for future review. See “Importing Review Comments from Previous
Verifications”.

4 Performing additional verifications on each component, as defined by your
quality objectives.

Improving Your Verification Process

Once you review initial verification results, you can assess both the overall
quality of your code, and how well the process meets your requirements for
software quality, development time, and cost restrictions.

Based on these factors, you may want to take actions to modify your process.
These actions may include:

e Reassessing your quality objectives.

® Changing your development process to produce code that is easier to verify.

® Changing PolySpace analysis options to improve the precision of the
verification.

® Changing PolySpace options to change how verification results are reported.

For more information, see “Managing Orange Checks”.

2-11

2 How fo Use PolySpace® Software

Sample Workflows for PolySpace Verification

In this section...

“Overview of Verification Workflows” on page 2-12

“Software Developers — Standard Development Process” on page 2-13
“Software Developers — Rigorous Development Process” on page 2-16
“Quality Engineers — Code Acceptance Criteria” on page 2-20

“Quality Engineers — Certification/Qualification” on page 2-23
“Model-Based Design Users — Verifying Generated Code” on page 2-25

“Project Managers — Integrating PolySpace Verification with Configuration
Management Tools” on page 2-29

Overview of Verification Workflows

PolySpace verification supports two objectives at the same time:

¢ Reducing the cost of testing and validation

¢ Improving software quality
You can use PolySpace verification in different ways depending on your
development context and quality model. The primary difference being how

you exploit verification results.

This section provides sample workflows that show how to use PolySpace
verification in a variety of development contexts.

2-12

Sample Workflows for PolySpace® Verification

Software Developers - Standard Development
Process

User Description

This workflow applies to software developers using a standard development
process. Before implementing PolySpace verification, these users fit the
following criteria:

® In Ada, no unit test tools or coverage tools are used — functional tests are
performed just after coding.

¢ In C, either no coding rules are used, or rules are not followed consistently.

Quality Obijectives

The main goal of PolySpace verification is to improve productivity while
maintaining or improving software quality. Verification helps developers find
and fix bugs more quickly than other processes. It also improves software
quality by identifying bugs that otherwise might remain in the software.

In this process, the goal is not to completely prove the absence of errors. The
goal is to deliver code of equal or better quality that other processes, while
optimizing productivity to ensure a predictable time frame with minimal
delays and costs.

Verification Workflow
This process involves file-by-file verification immediately after coding, and
again just before functional testing.

2-13

2 How fo Use PolySpace® Software

2-14

Requirements Validation Testing

Functional Design Integration Testing

Module Testing

=
PolySpace®

Code Verification

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform robustness
verification, using default PolySpace options.

Note This means that verification uses the automatically generated
“main” function. This main will call all unused procedures and functions
with full range parameters.

2 Each developer performs file-by-file verification as they write code, and
reviews verification results.

3 The developer fixes all red errors and examines gray code identified by
the verification.

4 The developer repeats steps 2 and 3 as needed, while completing the code.
5 Once a developer considers a file complete, they perform a final verification.

6 The developer fixes any red errors, examines gray code, and performs
a selective orange review.

Sample Workflows for PolySpace® Verification

Note The goal of the selective orange review is to find as many bugs as
possible within a limited period of time.

Using this approach, it is possible that some bugs may remain in unchecked
oranges. However, the verification process represents a significant
improvement from the previous process.

Costs and Benefits
When using verification to detect bugs:

¢ Red and gray checks — The number of bugs found in red and gray checks
varies, but approximately 40% of verifications reveal one or more red errors
or bugs in gray code.

® Orange checks — The time required to find one bug varies from 5 minutes
to 1 hour, and is typically around 30 minutes. This represents an average
of two minutes per orange check review, and a total of 20 orange checks per
package in Ada and 60 orange checks per file in C.

Disadvantages to this approach:
e Setup time - the time needed to set up your verification will be higher if

you do not use coding rules. You may need to make modifications to the
code before launching verification.

2-15

2 How fo Use PolySpace® Software

2-16

Software Developers - Rigorous Development
Process

User Description

This workflow applies to software developers and test engineers working
within development groups. These users are often developing software for
embedded systems, and typically use coding rules.

These users typically want to find bugs early in the development cycle using a
tool that is fast and iterative.

Quality Obijectives

The goal of PolySpace verification is to improve software quality with equal or
increased productivity.

Verification can prove the absence of runtime errors, while helping developers
find and fix any bugs more quickly than other processes.

Verification Workflow

This process involves both code analysis and code verification during the
coding phase, and thorough review of verification results before module
testing. It may also involve integration analysis before integration testing.

Sample Workflows for PolySpace® Verification

Integration Testing

f ¥

Textual _| Application | Module | %_ Hand-written|#” | Object
Requirements| | Design "] Design " Code " Code

Writing
Code

Compilation
and Linking

[] Development Artifact
@ Software Development Activity

Verification of
C and C++ Code

Workflow for Code Verification

Note Solid arrows in the figure indicate the progression of software
development activities.

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to perform contextual
verification. This involves:

¢ Using Data Range Specifications (DRS) to define initialization ranges
for input data. For example, if a variable “x” is read by functions in
the file, and if x can be initialized to any value between 1 and 10, this
information should be included in the DRS file.

¢ Creates a “main” program to model call sequence, instead of using the
automatically generated main.

® Sets options to check the properties of some output variables. For
example, if a variable “y” is returned by a function in the file and should
always be returned with a value in the range 1 to 100, then PolySpace
can flag instances where that range of values might be breached.

2-17

2 How fo Use PolySpace® Software

2 The project leader configures the project to check appropriate coding rules.

3 Each developer performs file-by-file verification as they write code, and
reviews both coding rule violations and verification results.

4 The developer fixes any coding rule violations, fixes all red errors,
examines gray code, and performs a selective orange review.

5 The developer repeats steps 2 and 3 as needed, while completing the code.
6 Once a developer considers a file complete, they perform a final verification.

7 The developer performs an exhaustive orange review on the remaining
orange checks.

Note The goal of the exhaustive orange review is to examine all orange
checks that were not reviewed as part of previous reviews. This is possible
when using coding rules because the total number of orange checks is
reduced, and the remaining orange checks are likely to reveal problems
with the code.

Optionally, an additional verification can be performed during the integration
phase. The purpose of this additional verification is to track integration bugs,
and review:

® Red and gray integration checks;

® The remaining orange checks with a selective review: Integration bug
tracking.

Costs and Benefits

With this approach, PolySpace verification typically provides the following
benefits:

e 3-5 orange and 3 gray checks per file, yielding an average of 1 bug. Often,

2 of the orange checks represent the same bug, and another represent an
anomaly.

2-18

Sample Workflows for PolySpace® Verification

e Typically, each file requires two verifications before it can be checked-in to
the configuration management system.

® The average verification time is about 15 minutes.

Note If the development process includes data rules that determine the
data flow design, the benefits might be greater. Using data rules reduces
the potential of verification finding integration bugs.

If performing the optional verification to find integration bugs, you may see
the following results. On a typical 50,000 line project:

® A selective orange review may reveal one integration bug per hour
of code review.

e Selective orange review takes about 6 hours to complete. This is long
enough to review orange checks throughout the whole application. This
represents a step towards an exhaustive orange check review. However,
spending more time is unlikely to be efficient, and will not guarantee that
no bugs remain.

® An exhaustive orange review takes between 4 and 6 days, assuming that
50,000 lines of code contains approximately 400-800 orange checks.

2-19

2 How fo Use PolySpace® Software

2-20

Quality Engineers - Code Acceptance Criteria

User Description

This workflow applies to quality engineers who work outside of software
development groups, and are responsible for independent verification of
software quality and adherence to standards.

These users generally receive code late in the development cycle, and may
even be verifying code that is written by outside suppliers or other external
companies. They are concerned with not just detecting bugs, but measuring
quality over time, and developing processes to measure, control, and improve
product quality going forward.

Quality Obijectives

The main goal of PolySpace verification is to control and evaluate the safety
of an application.

The criteria used to evaluate code can vary widely depending on the criticality
of the application, from no red errors to exhaustive oranges review. Typically,
these criteria become increasingly stringent as a project advances from early,
to intermediate, and eventually to final delivery.

For more information on defining these criteria, see “Defining Software
Quality Levels” on page 2-7.

Verification Workflow

This process usually involves both code analysis and code verification before
validation phase, and thorough review of verification results based on defined
quality objectives.

Sample Workflows for PolySpace® Verification

Requirements Validation Testing

Original = a

Equipment PolySpace
Manufacturer
Code Verification

Functional Design Integration Testing

Sub-contractor]|
Coding Module Testing

Note Verification is often performed multiple times, as multiple versions of
the software are delivered.

The verification workflow consists of the following steps:

1 Quality engineering group defines clear quality objectives for the code to be
written, including specific quality levels for each version of the code to be
delivered (first, intermediate, or final delivery) For more information, see
“Defining Quality Objectives” on page 2-5.

2 Development group writes code according to established standards.

3 Development group delivers software to the quality engineering group.

4 The project leader configures the PolySpace project to meet the defined
quality objectives, as described in “Defining a Verification Process to Meet
Your Objectives” on page 2-10.

5 Quality engineers perform verification on the code.

6 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the process.

2-21

2 How fo Use PolySpace® Software

2-22

Note The number of orange checks reviewed often depends on the version
of software being tested (first, intermediate, or final delivery). This can be
defined by quality level (see “Defining Software Quality Levels” on page
2-7.).

7 Quality engineers create reports documenting the results of the verification,
and communicate those results to the supplier.

8 Quality engineers repeat steps 5—7 for each version of the code delivered.

Costs and Benefits

The benefits of code verification at this stage are the same as with other
verification processes, but the cost of correcting faults is higher, because
verification takes place late in the development cycle.

It is possible to perform an exhaustive orange review at this stage, but the
cost of doing so can be high. If you want to review all orange checks at this
phase, it is important to use development and verification processes that
minimize the number of orange checks. This includes:

® Developing code using strict coding and data rules.

¢ Providing accurate manual stubs for all unresolved function calls.

¢ Using DRS to provide accurate data ranges for all input variables.

Taking these steps will minimize the number of orange checks reported by the

verification, and make it likely that any remaining orange checks represent
true issues with the software.

Sample Workflows for PolySpace® Verification

Quality Engineers - Certification/Qualification

User Description

This workflow applies to quality engineers who work with applications
requiring outside quality certification, such as IEC 61508 certification or
DO-178B qualification.

These users generally receive code late in the development cycle, and must
perform a set of activities to meet certification requirements.

Note For more information on using PolySpace products within an IEC
61508 certification environment, see the IEC Certification Kit: Verification of
C and C++ Code Using PolySpace Products.

For more information on using PolySpace products within an DO-178B
qualification environment, see the DO Qualification Kit: PolySpace
Client/Server for C/C++ Tool Qualification Plan.

Quality Obijectives

The main goal of PolySpace verification is to improve productivity by replacing
other qualification activities.

In this context, software quality is already extremely high, so verification is
not intended to improve quality. Instead, it is intended to reduce the cost of
achieving such quality.

PolySpace verification can increase productivity by replacing existing
activities, such as:

e Data and control flow verification
e Shared data conflict detection

® Robustness unit tests

These activities are often performed by hand, or with classical testing
methods, which can be time consuming. PolySpace verification can complete

2-23

2 How fo Use PolySpace® Software

the same tasks more efficiently, bringing improved productivity and reducing
the cost of the process.

Verification Workflow
The verification workflow consists of the following steps:

1 Developers write code using both coding and data rules.

2 The project leader configures the PolySpace project to meet the quality
objectives of the certified process.

3 Quality engineers perform verification at the unit test stage.

4 Quality engineers review all red errors, gray code, and the number of
orange checks defined in the certified process.

5 Quality engineers review verification results for data and control flow
verification, and shared data detection.

6 Optionally, quality engineers perform an additional verification at the
integration test phase.

Costs and Benefits

The replacement of these activities can lead to significant cost reductions. For
example, the time spent on data and control flow verification can decrease
from 3 months to 2 weeks.

Quality is also more consistent since the process is more automated.

PolySpace tools are equally efficient on a Friday afternoon and on a Tuesday
morning.

2-24

Sample Workflows for PolySpace® Verification

Model-Based Design Users — Verifying Generated
Code

User Description

This workflow applies to users who have adopted model-based design to
generate code for embedded application software.

These users generally use PolySpace software in combination with several
other Mathworks products, including Simulink, Real-Time Workshop
Embedded Coder, and Simulink Design Verifier. In many cases, these
customers combine application components that are hand-written code with
those created using generated code.

Quality Obijectives

The goal of PolySpace verification is to improve the quality of the software by
identifying implementation issues in the code, and ensuring the code is both
semantically and logically correct.

PolySpace verification allows you to find run time errors:

¢ In hand-coded portions within the generated code
¢ In the model used for production code generation

¢ In the integration of hand-written and generated code

2-25

2 How to Use PolySpace® Software

Verification Workflow

The workflow is different for hand-written code, generated code, and mixed
code. PolySpace products can perform code verification as part of any of these

workflows. The following figure shows a suggested verification workflow for
hand-written and mixed code.

Integration Testing

Code Analy5|s Code Verification

2 y . ;
Textual _| Application | Module | % |Hand-written}®
Requirements "1 Design "] Design g Code
s, :
/ . .
s Compilation Object
Pd and Link Code
P 2BNPTEEEEE o emmeee,
» Coqe'AnaIysis“.“."Code Verification
Textual _ | Executable N MfodecI:Udsed 4| Generated |£
Requirements Specification > ‘tortode Code
Generation

Code

Modeling Generation

[] Development Artifact
(@ Software Development Activity

Verification of
C and C++ Code

Workflow for Verification of Generated and Mixed Code

Note Solid arrows in the figure indicate the progression of software
development activities.

2-26

Sample Workflows for PolySpace® Verification

The verification workflow consists of the following steps:

1 The project leader configures a PolySpace project to meet defined quality
objectives.

2 Developers write hand-coded sections of the application.

3 Developers perform PolySpace verification on any hand-coded sections
within the generated code, and review verification results according to
the established quality objectives.

4 Developers create Simulink® model based on requirements.

5 Developers validate model to ensure it is logically correct (using tools
such as Simulink Model Advisor, and the Simulink® Verification and
Validation™ and Simulink® Design Verifier™ products).

6 Developers generate code from the model.

7 Developers perform PolySpace verification on the entire software
component, including both hand-written and generated code.

8 Developers review verification results according to the established quality
objectives.

Note The PolySpace Model Link™ SL product allows you to quickly track
any issues identified by the verification back to the appropriate block in
the Simulink model.

2-27

2 How fo Use PolySpace® Software

2-28

Costs and Benefits

PolySpace verification can identify errors in textual designs or executable
models that are not identified by other methods. The following table shows
how errors in textual designs or executable models can appear in the resulting

code.

Examples of Common Run-Time Errors

Type of Error

Design or Model Errors

Code Errors

Arithmetic ¢ Incorrect Scaling ¢ Overflows/Underflows
Crrors ® Unknown calibrations ® Division by zero

® Untested data ranges e Square root of negative numbers
Memory ® Incorrect array specification in ® QOut of bound array indexes
corruption state machines e Pointer arithmetic

® Incorrect legacy code (look-up

tables)

Data ¢ Unexpected data flow ¢ Overflows/Underflows
truncation

Wrap-around

Logic errors

Unreachable states

Incorrect Transitions

Non initialized data

Dead code

Sample Workflows for PolySpace® Verification

Project Managers — Integrating PolySpace
Verification with Configuration Management Tools

User Description

This workflow applies to project managers responsible for establishing
check-in criteria for code at different development stages.

Quality Obijectives
The goal of PolySpace verification is to test that code meets established
quality criteria before being checked in at each development stage.

Verification Workflow
The verification workflow consists of the following steps:

1 Project manager defines quality objectives, including individual quality
levels for each stage of the development cycle.

2 Project leader configures a PolySpace project to meet quality objectives.

3 Developers run verification at the following stages:

¢ Daily check-in — On the files currently under development.
Compilation must complete without the permissive option.

¢ Pre-unit test check-in — On the files currently under development.

* Pre-integration test check-in — On the whole project, ensuring that
compilation can complete without the permissive option. This stage
differs from daily check-in because link errors are highlighted.

¢ Pre-build for integration test check-in — On the whole project, with
all multitasking aspects accounted for as appropriate.

® Pre-peer review check-in — On the whole project, with all
multitasking aspects accounted for as appropriate.

4 Developers review verification results for each check-in activity to ensure
the code meets the appropriate quality level. For example, the transition
criterion could be: “No bug found within 20 minutes of selective orange
review”

2-29

2 How fo Use PolySpace® Software

2-30

PolySpace Class Analyzer

® “Analyzing C++ Classes” on page 3-2
¢ “How the Class Analyzer Works” on page 3-3
® “Types of Classes” on page 3-12

3 PolySpace® Class Analyzer

Analyzing C++ Classes

In this section...

“Overview” on page 3-2

“Why Provide a Class Analyzer” on page 3-2

Overview

This chapter explains how to use PolySpace to verify C++ classes in order to
identify, and possibly remove, most of the run-time errors present in a class.

Why Provide a Class Analyzer

One aim of object-oriented languages such as C++ is reusability. A class or a
class family is reusable if it is free of bugs for all possible uses of the class.
It can be considered free of bugs if run-time errors have been removed and
functional tests are successful. The foremost objective when developing code
in such a language is to identify and remove as many run-time errors as
possible.

PolySpace class analyzer is a tool for removing run-time errors at compilation
time. The software will simulate all the possible uses of a class by:

1 Creating objects using all constructors (default if none exist).

2 Calling all methods (public, static, and protected) on previous objects in
every order.

3 Calling all methods of the class between time zero and infinity.

4 Calling every destructor on previous objects (if they exist).

How the Class Analyzer Works

How the Class Analyzer Works

In this section...

“Overview” on page 3-3

“Sources to be Verified” on page 3-4

“Architecture of the Generated main” on page 3-4

“Log File” on page 3-5

“Characteristics of a Class and Messages in the Log File” on page 3-6

“Behavior of Global variables and members” on page 3-6

“Methods and Class Specificities” on page 3-9

Overview

The PolySpace™ Class Analyzer verifies applications class by class, even if
these classes are only partially developed.

The benefits of this process include error detection at a very early stage,
even if the class is not fully developed, without any test cases to write. The
process is very simple: provide the class name and the software will verify its
robustness.

® PolySpace will generate a “pseudo” main.

e [t will call each constructor of the class.

¢ [t will then call each public function from the constructors.

¢ Each parameter will be initialized with full range (i.e., with a random
value).

e External variables will also be assigned random values.

Note Only prototypes of objects (classes, methods, variables, etc.) are needed
to verify a given class. All missing code will be automatically stubbed.

3 PolySpace® Class Analyzer

3-4

Sources to be Verified

The sources associated with the verification normally concern public and
protected methods of the class. However, sources can also come from inherited
classes (fathers) or be the sources of other classes that are used by the class
under investigation (friend, etc.).

Architecture of the Generated main

PolySpace generates the call to each constructor and method of the class.
Each method will be analyzed with all constructors. Each parameter is
initialized to random. Note that even if you can get an idea of the architecture
of the generated main in PolySpace Viewer, the main is not real. You cannot
reuse or compile it.

Consider the example class MathUtils in training.cpp which is located in
<PolySpaceInstallDir>\Examples\Demo_Cpp_Long\sources\training.cpp
This class contains one constructor, one destructor and seven public methods.
The architecture of the generated main is as follows:

Generating call to constructor: MathUtils:: MathUtils ()
While (random) {
If (random) Generating call to function: MathUtils::Pointer_Arithmetic()
If (random) Generating call to function: MathUtils::Close_To_Zero()
If (random) Generating call to function: MathUtils::MathUtils()
If (random) Generating call to function: MathUtils::Recursion_2(int *)
If (random) Generating call to function: MathUtils::Recursion(int *)
If (random) Generating call to function: MathUtils::Non_Infinite_Loop()
If (random) Generating call to function: MathUtils::Recursion_caller()
}
Generating call to destructor: MathUtils::~MathUtils()

Note An ASCII file representing the “pseudo” main can be seen in
C:\PolySpace_Results\ALL\SRC_polyspace_main.cpp

If a class contains more than one constructor, they are called before the “while”
statement in an “if then else” statement. This architecture ensures that the
verification will evaluate each function method with every constructor.

How the Class Analyzer Works

Log File
During a class verification, the list of methods used for the main appears in
the log file during the normalization phase of the C++ verification.

You can view the details of what will be analyzed in the log. Here is an
example concerning the MathUtils class and associated log file which can be
found at the root of the C:\PolySpace Results directory:

LR EEEE SRS EEEE SRS S SRR R SRR RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
* k%

*** Beginning C++ source normalization

k

kkhkkhkkhkhkhkhkhkhkhkhkhhhhkhhkhkkhkhkhhhhhkhhkhkhhhhhhkhkhkhdhkhhhhhhkhkhkhhhkhhhkddkddhhkhkrkkhkh*x%

Number of files : 1

Number of lines : 202

Number of lines with libraries : 7009

**** C++ source normalization 1 (Loading)

**** C++ source normalization 1 (Loading) took 20.8real, 7.9u + 11.4s
(1gc)

**** C++ source normalization 2 (P_INIT)

* Generating the Main

Generating call to function: MathUtils::Pointer_Arithmetic()
Generating call to function: MathUtils::Close_To_Zero()
Generating call to function: MathUtils::MathUtils()
Generating call to function: MathUtils::Recursion_2(int *)
Generating call to function: MathUtils::Recursion(int *)
Generating call to function: MathUtils::Non_Infinite_Loop()
Generating call to function: MathUtils::~-MathUtils()
Generating call to function: MathUtils::Recursion_caller()

It may be that a main is already defined in the files you are analyzing. In that
case, you will receive this warning:

*** Beginning C++ source normalization

* Warning: a main procedure already exists but will be ignored.

3-5

3 PolySpace® Class Analyzer

Characteristics of a Class and Messages in the Log
File
The log file may contain some error messages concerning the class to be

analyzed. These messages appear when characteristics of a class are not
respected.

e [t is not possible to analyze a class that does not exist in the given sources.
The verification will halt with the following message:

@User Program Error: Argument of option -class-analyzer
must be defined : <name>.
Please correct the program and restart the verifier.

¢ [t is not possible to analyze a class that only contains declarations without
code. The verification will halt with the following message:

@User Program Error: Argument of option -class-analyzer
must contain at least one function : <name>.
Please correct the program and restart the verifier.

Behavior of Global variables and members

Global Variables

During a class verification, global variables are not considered to be following
ANSI Standard anymore if they are defined but not initialized. Remember
that ANSI Standard considers, by default, that global variables are initialized
to zero.

In a class verification, global variables do not follow standard behaviors:

® Defined variables are initialized to random and then follow the data flow
of the code to be analyzed.

e Initialized variables are used with the specified initialized values and then
follow the data flow of the code to be analyzed.

How the Class Analyzer Works

¢ External variables are assigned definitions and initialized to random
values.

An example below demonstrates the behaviors of two global variables:

1
2 extern int fround(float fx);

3

4 // global variables

5 int globvari;

6 int globvar2

7

8 class Location

9 {

10 private:

11 void calculate_new(void);

12 int x;

13

14 public:

15 // constructor 1

16 Location(int intx = 0) { x = intx; };

17 // constructor 2

18 Location(float fx) { x = fround(fx); };

19

20 void setx(int intx) { x = intx; calculate_new();
21 void fsetx(float fx) {

22 int tx = fround(fx);

23 if (tx / globvar1 != 0) // ZDV check is orange
24 {

25 tx = tx / globvar2; // ZDV check is green

26 setx(tx);

27 }

28 1}

29 };

};

In the above example, globvari is defined but not initialized (see line 5),
so the check ZDV is orange at line 23. In the same example, globvar2 is
initialized to 100 (see line 6), so the ZDV check is green at line 25.

3-7

3 PolySpace® Class Analyzer

3-8

Data Members of Other Classes

During the verification of a specific class, variable members of other classes,
even members of parent classes, are considered to be initialized. They exhibit
the following behaviors:

1 They may not be considered to be initialized if the constructor of the class
is not defined. They are assigned to full range, and then they follow the
data flow of the code to be analyzed.

2 They are considered to be initialized to the value defined in the constructor
if the constructor of the class is defined in the class and is provided for the
verification. If the -class-only option is applied, the software behaves as
though the definition of the constructor is missing (see item 1 above).

3 They may be checked as run-time errors if and only if the constructor is
defined but does not initialize the member under consideration.

The example below displays the results of a verification of the class MyClass.
It demonstrates the behavior of a variable member of the class OtherClass
that was provided without the definition of its constructor. The variable
member of OtherClass is initialized to random; the check is orange at line 7
and there are possible overflows at line 17 because the range of the return
value wx is “full range” in the type definition.

class OtherClass

{
protected:

int x;
public:

OtherClass (int intx); // code is missing
int getMember(void) {return x;}; // NIV is warning
b

class MyClass

{

OtherClass m_loc;

public:

MyClass(int intx) : m_loc(0) {};

void show(void) {

int wx, wl;
wx = m_loc.getMember();

How the Class Analyzer Works

wl = wx*wx 2; // Possible overflows because OtherClass
// member is assigned to full range

b

b

Methods and Class Specificities

Template

A template class cannot be verified on its own. PolySpace will only consider a
specific instance of a template to be a class that can be analyzed.

Consider template<class T, class Z> class A { }.

If we want to analyze template class A with two class parameters T and Z, we
have to define a typedef to create an instance of the template with specified
specializations for T and Z. In the example below, T represents an int and

Z a double:

template class A<int, double>; // Explicit specialisation
typedef class A<int, double> my_template;

my_template is used as a parameter of the -class-analyzer option in order
to analyze this instance of template A.

Abstract Classes

In the real world, an instance of an abstract class cannot be created, so it
cannot be analyzed. However, it is easy to establish a verification by removing
the pure declarations. For example, this can be accomplished via an abstract
class definition change:

void abstract_func () = 0; by void abstract_func ();
If an abstract class is provided for verification, the software will make the
change automatically and the virtual pure function (abstract_func in the

example above) will then be ignored during the verification of the abstract
class.

3-9

3 PolySpace® Class Analyzer

This means that no call will be made from the generated main, so the function
is completely ignored. Moreover, if the function is called by another one, the
pure virtual function will be stubbed and an orange check will be placed on
the call with the message “call of virtual function [f] may be pure.”

Static Classes

If a class defines a static methods, it is called in the generated main as a
classical one.

Inherited Classes

When a function is not defined in a derived class, even if it is visible because
it is inherited from a father’s class, it is not called in the generated main. In
the example below, the class Point is derived from the class Location:

class Location
{
protected:
int x;
int y;
Location (int intx, int inty);
public:
int getx(void) {return x;};
int gety(void) {return y;};
b
class Point : public Location
{
protected:
bool visible;
public
Point(int intx, int inty) : Location (intx, inty)
{
visible = false;
b
void show(void) { visible true;};
void hide(void) { visible false;};
bool isvisible(void) {return visible;};
b

3-10

How the Class Analyzer Works

Although the two methods Location::getx and Location: :gety are visible
for derived classes, the generated main does not include these methods when
analyzing the class Point.

Inherited members are considered to be volatile if they are not explicitly
initialized in the father’s constructors. In the example above, the two
members Location: :x and Location: :y will be considered volatile. If we
analyze the above example in its current state, the method Location::
Location(constructor) will be stubbed.

3-11

3 PolySpace® Class Analyzer

3-12

Types of Classes

In this section...

“Simple Class” on page 3-12
“Simple Inheritance” on page 3-14
“Multiple Inheritance” on page 3-15
“Abstract Classes” on page 3-16
“Virtual Inheritance” on page 3-17

“Other Types of Classes” on page 3-18

Simple Class
Consider the following class:

Stack.h

#define MAXARRAY 100

class stack

{
int array[MAXARRAY];
long toparray;

public:
int top (void);
bool isempty (void);
bool push (int newval);
void pop (void);
stack ();

};

stack.cpp

1 #include "stack.h"
2

3 stack::stack ()

4 {

Types of Classes

5 toparray = -1;

6 for (int = 0 ; 1 < MAXARRAY; i++)
7

8

I -

array[i] 0;

}
9
10 int stack::top (void)
11 {
12 int i = toparray;
13 return (array[i]);
14 }
15
16 bool stack::isempty (void)
17 {
18 if (toparray >= 0)
19 return false;

20 else

21 return true;

22 }

23

24 bool stack::push (int newvalue)
25 {

26 if (toparray < MAXARRAY)

27 {

28 array[++toparray] = newvalue;
29 return true;

30 }

31

32 return false;

33 }

34

35 void stack::pop (void)
36 {

37 1if (toparray >= 0)

38 toparray--;

39 }

The class analyzer calls the constructor and then all methods in any order
many times.

The verification of this class highlights two problems:

3-13

3 PolySpace® Class Analyzer

® The stack: :push method may write after the last element of the array,
resulting in the OBAI orange check at line 28.

e [f called before push, the stack: :top method will access element -1,
resulting in the OBAI and NIV checks at line 13.

Fixing these problems will eliminate run-time errors in this class.

Simple Inheritance
Consider the following classes:

A is the base class of B and D.
B is the base class of C.

In a case such a this, PolySpace allows you to run the following verifications:

3-14

Types of Classes

1 You can analyze class A just by providing its code to the software. This
corresponds to the previous “Simple Class” section in this chapter.

2 You can analyze class B class by providing its code and the class A
declaration. In this case, A code will be stubbed automatically by the
software.

3 You can analyze class B class by providing B and A codes (declaration and
definition). This is a “first level of integration” verification. The class
analyzer will not call A methods. In this case, the objective is to find bugs
only in the class B code.

4 You can analyze class C by providing the C code, the B class declaration
and the A class declaration. In this case, A and B codes will be stubbed
automatically.

5 You can analyze class C by providing the A, B and C codes for an integration
verification. The class analyzer will call all the C methods but not inherited
methods from B and A. The objective is to find bugs only in class C.

In these cases, there is no need to provide D class code for analyzing A, B and

C classes as long as they do not use the class (e.g., member type) or need
it (e.g., inherit).

Multiple Inheritance

Consider the following classes:

3-15

3 PolySpace® Class Analyzer

A and B are base classes of C.
In this case, PolySpace allows you to run the following verifications:

1 You can analyze classes A and B separately just by providing their codes
to the software. This corresponds to the previous “Simple Class” section
in this chapter.

2 You can analyze class C by providing its code with A and B declarations. A
and B methods will be stubbed automatically.

3 You can analyze class C by providing A, B and C codes for an integration

verification. The class analyzer will call all the C methods but not inherited
methods from A and B. The objective is to find bugs only in class C.

Abstract Classes

Consider the following classes:

3-16

Types of Classes

Fi8
abstract

A is an abstract class

B is a simple class.

A and B are base classes of C.

C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed
separately from other classes. Therefore, you are not allowed to specify class

A to the PolySpace class analyzer. Of course, class C can be analyzed in the
same way as in the previous section “Multiple Inheritance.”

Virtual Inheritance

Consider the following classes:

3-17

3 PolySpace® Class Analyzer

3-18

B and C classes virtually inherit the A class
B and C are base classes of D.

A, B, C and D can be analyzed in the same way as described in the previous
section “Abstract Classes.”

Virtual inheritance has no impact on the way of using the class analyzer.

Other Types of Classes

Template Class
A template class can not be analyzed directly. But a class instantiating a
template can be analyzed by PolySpace.

Types of Classes

Note If only the template declaration is provided, missing functions’
definitions will automatically be stubbed.

Example

template<class T > class A {
public:

T i;

T geti() {return 1i;}

A() = 1(1) {}

b

You have to define a typedef to create a specialization of the template:

template class A<int>; // Explicit specialization
typedef class A<int> my_template; // complete instance of the template

and use option -class-analyzer my_template.

The software will analyze a single instance of the template.

Class Integration

Consider a C class that inherits from A and B classes and has object members
of AA and BB classes.

A class integration verification consists of verifying class C and providing the
codes for A, B, AA and BB. If some definitions are missing, the software will
automatically stub them.

3-19

3 PolySpace® Class Analyzer

3-20

Setting Up a Verification
Project

e “Creating a Project” on page 4-2

® “Specifying Options to Match Your Quality Objectives” on page 4-18
e “Setting Up Project to Check Coding Rules” on page 4-22

e “Setting Up Project for Generic Target Processors” on page 4-27

4 Setting Up a Verification Project

4-2

Creating a Project

In this section...

“What Is a Project?” on page 4-2

“Project Directories” on page 4-3

“Opening PolySpace Launcher” on page 4-3
“Specifying Default Directory” on page 4-6
“Creating New Projects” on page 4-7
“Opening Existing Projects” on page 4-8
“Specifying Source Files” on page 4-9
“Specifying Include Directories” on page 4-11
“Specifying Results Directory” on page 4-13
“Specifying Analysis Options” on page 4-14
“Configuring Text and XML Editors” on page 4-15
“Saving the Project” on page 4-16

What Is a Project?

In PolySpace software, a project is a named set of parameters for a verification
of your software project’s source files. You must have a project before you can
run a PolySpace verification of your source code.

A project includes:

® The location of source files and include directories
® The location of a directory for verification results

® Analysis options

You can create your own project or use an existing project. You create and
modify a project using the Launcher graphical user interface.

A project file has one of the following file types:

Creating a Project

Project Type File Extension Description

Configuration cfg Required for running a
verification. Does not
include generic target

processors.
PolySpace Project ppm For populating a project
Model with analysis options,
including generic target
processors.
Desktop dsk In earlier versions of

PolySpace software, for
running a verification
on a client computer.

Project Directories

Before you begin verifying your code with PolySpace software, you must know
the location of your source files and include files. You must also know where
you want to store the verification results.

To simplify the location of your files, you may want to create a project
directory, and then in that directory, create separate directories for the source
files, include files, and results. For example:

polyspace _project/

® sources
® includes

® results

Opening PolySpace Launcher

You use the PolySpace Launcher to create a project and start a verification.
To open the PolySpace Launcher:

1 Double-click the PolySpace Launcher icon.

4-3

4 Setting Up a Verification Project

ﬁ;

PaolySpace
Launcher

2 If you have both PolySpace for C/C++ and PolySpace for Ada products on
your system, the PolySpace Language Selection dialog box will appear.

PolySpace Language Selection |

Select a language

¥ PolySpace for CIC++

™ PolySpace for Ada

0K I Cancel

Select PolySpace for C/C++, then click OK.

The PolySpace Launcher window appears:

4-4

Creating a Project

Specify Specify include

source files directories
1
e
File Edit Tools Hel| 1
|Dom|alih X al# 8||» @ *| @ ;
4 I
L] - H |
- _l _l [y——
| Fiename | | Absolut| Path | I
Whalysis options !
1
—General | H
—TargetiCompilation ! S p ec |fY
—Compliance with standards: ana lySIS
—PalySpace inner settings ! options
—PrecizioniEcaling :
—Muttitasking !
1
1
1
1
1
1
1
1
Include directaries [-ada-inclufle-dir] :
1
1
1
1
1
Files extensions [—extensions—for—spec—files]I :
: ! Control
Results Directory [-rezults-dir] | . .
I verification
5| '
- 1
1
Send to PolyEpace Server [= &Ex
= i
| Compile : 0% CDF& - 0% | Levell : 0% | Levelz - 0% Monitor
00:00:00 00:00:00 00:00:00 00:00:00 progress

1
|

1

1

' '
% Compile Log |
Stats :
1

Full Log |

View log

The Launcher window has three main sections.

4-5

4 Setting Up a Verification Project

4-6

Use this For...
section...
Upper-left Specifying:

e Source files
® Include directories

¢ Results directory

Upper-right Specifying analysis options

Lower Controlling and monitoring a verification

You can resize or hide any of these sections. You learn more about the
Launcher window later in this tutorial.

Specifying Default Directory

PolySpace software allows you to specify the default directory that appears in
directory browsers in dialog boxes. If you do not change the default directory,
the default directory is the installation directory. Changing the default
directory to the project directory makes it easier for you to locate and specify
source files and include directories in dialog boxes.

To change the default directory to the project directory:
1 Select Edit > Preferences.

The Preferences dialog box appears.

2 Select the Default directory tab.

Creating a Project

x
Tools Menu | Remate Launcher
Miscelaneous I Result directory Default directory | Editars | Generic targets
Default folder for all browsers.
f+ Always use this spedific folder |C:\PolySpace\polyspace_project ! |
i~ Use the current path as a default folder
Ok Apply Cancel

3 Select Always use this specific folder if it is not already selected.
4 Enter or navigate to the project directory you want to use.

5 Click OK to apply the changes and close the dialog box.

Creating New Projects

To create a new project:
1 Select File > New Project.

The Choose the language dialog box appears:

4-7

4 Setting Up a Verification Project

| (04 I Cancell

2 Select CPP, then click OK.
The default project name, New_Project, appears in the title bar.

In the Analysis options section, the General options node expands with
default project identification information and options.

PolySpace Launcher for CPP - New_Project ;lglil

File Edit Tools Help

oW b X o488 » EH e
New Project l| ;I = : Search internal name from the selected line: I ’CJ 1 %‘?
| File Mame | Absolute Path . . Hame Value

Analysis options

[=-General
----- Session identifier Mew_Project
----- Date 07/07/2009
----- Author srunstro
----- Project version 1.0
----- Keep all preliminary results files O
----- Continue with the current configuration O
----- Continue even on an unsupported Linux distribution O
[=1-Report Generation O

-Report template name C:'PolySpace'\PalySpad ...
-Qutput format RTF -

H-Target/Compilation

Include directories [-]
nclude directories [1] t|--Compliance with standards

- Predsion/Scaling
H--Multitasking

I_'ILI | | i

Opening Existing Projects
To open an existing project:

£
[
B [#--PolySpace inner settings
[
£

15

4-8

Creating a Project

1 Select File > Open Project.
The Please select a file dialog box appears.
2 Select the project you want to open, then click OK.

The selected project opens in the Launcher.

PolySpace Launcher for CPP - New_Project =10l x|

File Edit Tools Help

[oWH|lb X &|l«dE b @
New Praject iI ;I 1= : Search internal name from the selected line: I @ 1 %‘?
| File Mame | Absolute Path - - fiame yalue
Analysis options
[=-General
----- Session identifier Mew_Project
----- Date 07/07/2009
----- Author srunstro
----- Project version 1.0
----- Keep all preliminary results files O
----- Continue with the current configuration O
----- Continue even on an unsupported Linux distribution O
[=-Report Generation O
-Report template name C:FolySpace\PalySpad ...
“-QOutput format RIF -

- Target/Compilation

Indude directories [
ndude drectories [1] t|--Compliance with standards

£
M
o [#--PolySpace inner settings
£
£

- Predision/Scaling
H--Multitasking

I_'ILI 4 | i

Specifying Source Files

To specify the source files for your project:

12

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

|

The Please select a file dialog box appears.

4-9

4 Setting Up a Verification Project

4-10

Please select a file x|

Loak in:

~] 2| &= 5

EJ includes
EJ resufts
10 sources

I(*.cpp) and (*.c) files

[~ Recurse subdirectories

—=ource files [-sources]

Bl

~Directories to include [-]

A Y

QK

Cancel

2 In the Look in field, navigate to your project directory containing your

source files.

3 Select the files you want to verify, then click the green down arrow button

in the Source files section.

A

The path of each source files appear in the source files list.

Tip You can also drag directory and file names from an open directory
directly to the source files list or include list.

Creating a Project

4 Click OK to apply the changes and close the dialog box.

The source files you selected appear in the files section in the upper left of
the Launcher window.

Mewy Project r | - |

File Mame Ahzalute Path
Itr‘ aiking .

| Ihclude directaries [-[]

-~ |C:1.pul~,fspa|:e _projectincludes

Results Directony [-results-dir]

CZ".FJDI':.-'SF]ECEJGFD]EET"J’ESUHSl -

Specifying Include Directories
To specify the include directories for the project:

1 Click the green plus sign button in the upper right of the files section of
the Launcher window.

4-11

4 Setting Up a Verification Project

4-12

|
The Please select a file dialog box appears.

E Please select a file

Xl
Loak in: ace_project n ll | El
10 includes
100 resuts
L) sources

I(*.cppj and (*.c) files
[~ Recurse subdirectories

~Source files [-sources]

~Directories to include [-1]

A B

(6138 Cancel

2 In the Look in field, navigate to your project directory.

3 Select the directory containing the include files for your project, then click
the green down arrow button in the Directories to include section.

|
The path for each include directory appears in the source files list.

4 Click OK to apply the changes and close the dialog box.

Creating a Project

The include directories you selected appear in the Include directories
section on the left side of the Launcher window.

Mewy Project © | - |

File Mame Ahbsolute Path

training.cpp -0 ace_projectisources

| Include directaries [-]

- |C:1.pnlyspa|:e _projectinciudes

Results Directony [-resulta-dir]

C:Wpul':.fspace;urnjecﬂresurts| -] |

Specifying Results Directory

To specify the results directory for the project:
1 In the Results Directory section of the Launcher window, specify the

full path of the directory that will contain your verification results. For
example: C:\polyspace_project\results.

4-13

4 Setting Up a Verification Project

The files section of the Launcher window now looks like:

Mewy Project © | - |

File Mame Ahbsolute Path

Chpolyspace_projectisources

| Include directaries [-]

- |C:1.pnlyspa|:e _projectinciudes

Results Directony [-resulta-dir]

C:Wpul':.fspace;urnjecﬂresurts| -] |

Specifying Analysis Options
The analysis options in the upper-right section of the Launcher window

include identification information and parameters that PolySpace software
uses during the verification process.

To specify General parameters for your project:

4-14

Creating a Project

1 In the Analysis options section of the Launcher window, expand General.

2 The General options appear.

Search internal name from the selected line:

2

L2

Mame Value

Internal name

----- Session identifier Mew_Project prog

----- Date 07/07/2009 date

----- Author polyspace_user -guthor

----- Project version 1.0 -verif-version

----- kKeep all preliminary results files - +eep-all-files

----- Continue with the current configuration r -continue-with-existing-host

----- Continue even on an unsupported Linux distribution r -allow-unsuppor ted-linux
Fl-Report Generation r

----- Report template name

C:\PalySpacePolys| ...

-report-template

----- Qutput format

RTF -

epor t-output-format

- Target/Compilation

|--Compliance with standards

fl-PolySpace inner settings

fl-Predsion/Scaling

| O O e O e O |

i-Multitasking

3 Specify the appropriate general parameters for your project.

For detailed information about specific analysis options, see “Option
Descriptions”in the PolySpace Products for C++ Reference.

Configuring Text and XML Editors

Before you running a verification you should configure your text and XML
editors in the Launcher. Configuring text and XML editors allows you to view
source files and JSF reports directly from the Launcher logs.

To configure your text and . XML editors:

4-15

4 Settin

g Up a Verification Project

4-16

1 Select Edit > Preferences.
The Preferences dialog box opens.
2 Select the Editors tab.

The Editors tab opens.

H Preferences

Toolz henu I Remnte | auncher
Miscelaneais I Rezult directory | Default directory I Generic targets

X

~HML editar configuration
Specify the full psth to a XML editor or use the brawse buttan.

WML Editar: IC:'I.F‘ngram Filez"M=0tficelDifice! XEXCEL EXE _)l

~Text editar configuration

Specify the full path to a text editor ar use the browese button.

Text Edlitor: IC:'I.F‘ru:ugram FilesWindows NTWCcessoriesweordpad exe _)l

Specify the command line arguments for the text editor,

Arguments: I

The fallowing macros can be uzed FFILE, 3LIMNE, FCOLLIMN

Ol Apply Cancel

3 Specify an XML editor to use to view JSF reports.

4 Specify a Text editor to use to view source files from the Launcher logs.

5 Click OK.

Saving the Project
To save the project:

1 Select File > Save project. The Save the project as dialog box appears.

Creating a Project

Loak i IE,'] polyspace_project

= 2 oEE

x|

|5 includes
50 results
I sources

Session identifier ||

Files of type: I*_Cfg

=l

ik

Cancel

2 In Look in, select your project directory.

3 In Session identifier, enter a name for your project.

4 Click OK to save the project and close the dialog box.

4-17

4 Setting Up a Verification Project

4-18

Specifying Options to Match Your Quality Objectives

In this section...

“Quality Objectives Overview” on page 4-18
“Choosing Contextual Verification Options” on page 4-18

“Choosing Strict or Permissive Verification Options” on page 4-20

“Choosing Coding Rules” on page 4-21

Quality Objectives Overview

While creating your project, you must configure analysis options to match
your quality objectives.

This includes choosing contextual verification options, coding rules, and
options to set the strictness of the verification.

Note For information on defining the quality objectives for your project, see
“Defining Quality Objectives” on page 2-5.

Choosing Contextual Verification Options

PolySpace software performs robustness verification by default. If you want
to perform contextual verification, there are several options you can use to
provide context for data ranges, function call sequence, and stubbing.

For more information on robustness and contextual verification, see “Choosing
Robustness or Contextual Verification” on page 2-5.

To specify contextual verification for your project:

1 In the Analysis options section of the Launcher window, expand PolySpace
Inner Settings.

2 Expand the Generate a main for the given functions , Main
generation general options, and Stubbing options.

Specifying Options to Match Your Quality Objectives

Mame Value Internal name

Analysis options

[#-General

[#-Target/Compilation
[--Compliance with standards

[=]-PolySpace inner settings

[H--Run a verification unit by unit -unit-by-unit

+]-Specify a Visual Studio compliant main

[
[

+--Generate a main for a given dass

|l i I

El-Generate a main for the given functions

‘e Function calls unused = | ... |-main-generator-calls

[=--Main generation general options

----- First function to call -function-called-before-main

----- Write accesses to global variables [uninit - | ... |-main-generator-writes-variables

E--Stubbing

----- Variable range setup v |-data-range-specifications

----- Mo automatic stubbing - no-automatic-stubbing

[#]--Assumptions

3 To set ranges on variables, use the following options:

e Variable range setup (-data-range-specifications) — Activates the
DRS option, allowing you to set specific data ranges for a list of global
variables.

e Write accesses to global variables
(-main-generator-writes-variables) — Specifies how the generated
main initializes global variables.

4 To specify function call sequence, use the following options:

¢ Function calls (-main-generator-calls) — Specifies how the
generated main calls functions.

¢ First function to call (-function-called-before-main) — Specifies
an initialization function called after initialization of global variables
but before the main loop.

5 To control stubbing behavior, use the following option:

4-19

4 Setting Up a Verification Project

¢ No automatic stubbing (-no-automatic-stubbing) — Specifies that
the software will not automatically stub functions. The software list the
functions to be stubbed and stops the verification.

For more information on these options, see “Options Description” in the
PolySpace Products for C++ Reference.

Choosing Strict or Permissive Verification Options

PolySpace software provides several options that allow you to customize the
strictness of the verification. You should set these options to match the
quality objectives for your application.

To specify the strictness of your verification:

1 In the Analysis options section of the Launcher window, expand
Compliance with standards.

2 In addition, expand PolySpace Inner Settings > Assumptions.

----- Permits overflowing computations on constants - dgnore-constant-overflows
----- Continue even with undefined global variables r -gllowe-undef-variables
----- Do not check the sign of operand in left shifts r -gllow-negative-operand-in-shift
----- Give all warnings - “Wall
[=--PolySpace inner settings
[#--Run a verification unit by unit r -unit-by-unit
[--Specify a Visual Studio compliant main -
[+-Generate a main for a given dass r
[#--Generate a main for the given functions r
[#--Main generation general options
[H--5Stubbing
[El-Assumptions
----- Ignore float rounding r 4gnare-float-rounding
----- Detect overflows on unsigned integers - -detect-unsigned-overflows

3 Use the following options to make verification more strict:

4-20

Specifying Options to Match Your Quality Obijectives

¢ Detect overflows on unsigned integers
(-detect-unsigned-overflows) — Verification is more strict with
overflowing computations on unsigned integers.

® Give all warnings (-wall) — Specifies that all C compliance warnings
are written to the log file during compilation.

4 Use the following options to make verification more permissive:

¢ Do not check the sign of operand in left shifts
(-allow-negative-operand-in-shift) — Verification allows a
shift operation on a negative number.

¢ Permits overflowing computations on constants
(-ignore-constant-overflows) — Verification is permissive with
overflowing computations on constants.

¢ Continue even with undefined global variables
(-allow-undef-variables) — Verification does not stop due
to errors caused by undefined global variables.

For more information on these options, see “Options Description” in the
PolySpace Products for C++ Reference.

Choosing Coding Rules

PolySpace software can check that your code complies with specified coding
rules. Before starting code verification, you should consider implementing
coding rules, and choose which rules to enforce.

For more information, see “Setting Up Project to Check Coding Rules” on
page 4-22.

4-21

4 Setting Up a Verification Project

Setting Up Project to Check Coding Rules

In this section...

“PolySpace JSF C++ Checker Overview” on page 4-22
“Checking Compliance with JSF++ Coding Rules” on page 4-22
“Creating a JSF++ Rules File” on page 4-23

“Excluding Files from JSF++ Checking” on page 4-25

PolySpace JSF C++ Checker Overview

The PolySpace JSF C++ checker helps you comply with the Joint Strike
Fighter Air Vehicle C++ coding standards (JSF++). These coding standards
were developed by Lockheed Martin® for the JSF program, and are designed
to improve the robustness of C++ code, and improve maintainability.

The PolySpace JSF C++ checker enables PolySpace software to provide
messages when JSF++ rules are not respected. Most messages are reported
during the compile phase of a verification. The JSF C++ checker can check
120 of the 221 JSF++ programming rules .

Note The PolySpace JSF C++ checker is based on JSF++:2005.
For more information on these coding standards, see
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc.

Checking Compliance with JSF++ Coding Rules

To check JSF++ compliance, you set an option in your project before running
a verification. PolySpace software finds the violations during the compile
phase of a verification. When you have addressed all JSF++ violations, you
run the verification again.

To set the JSF++ checking option:

1 In the Analysis options, select Compliance with standards > Check
JSF-C++: 2005 rules.

4-22

http://www.jsf.mil/downloads/documents/JSF_AV_C%2B%2B_Coding_Standards_Rev_C.doc

Setting Up Project to Check Coding Rules

The software displays the two JSF++ options: jsf-coding-rules and
includes-to-ignore.

[E-Check JSF-C++: 2005 rules ~
—Rules configuration ... fist-coding-rules
—Files and directaries to ignore ... fincludes-to-ignore

These options allow you to specify which rules to check and any files to
exclude from the checker.

2 Select the Check JSF-C++: 2005 rules check box.

3 Specify which JSF++ rules to check and which, if any, files to exclude from
the checking.

Note For more information on using the JSF C++ checker, see Chapter 12,
“JSF C++ Checker”.

Creating a JSF++ Rules File
You must have a rules file to run a verification with JSF++ checking. You can
use an existing file or create a new one.

To create a new rules file:

1 Click the button I_I to the right of the Rules configuration option.

The New File window opens, allowing you to create a new JSF++ rules
file, or open an existing file.

4-23

4 Setting Up a Verification Project

4-24

File
Set the following state to all Jsf rules : IEerr - I El
Rules Error |Warning| Off Comments
JSF AY rules =
i-Mumber of rules by mode : 1 156 7
[Fl-Code Size and Complexity - Rules 1to 3
-1 Any one function {or method) will containnan i 8
-2 There shall not be any self-modifying code, i i f* Mot imolemented
-3 &l functions shall have a cyclomatic complexit] C O
[+-Fules - Rules 4 to 7
----- Terminology
[EI-Enviranment - Rules 3 to 15 oo
-3 all code shall conform to ISO/IEC 14882:2002) % [s
-4 Only those characters specified in the C++bag i« s
--10 Values of character types will be restricted t [= Mot imolemented
--11 Trigraphs will not be used, s [a T
--12 The following digraphs will not be used: "<%g [a T
--13 Multi-byte characters and wide string literals| [a T
--14 Literal suffixes shall use uppercase rather th) i« s
--15 Provision shall be made for run-time checking i« s
[+-Libraries - Rules 16 to 25
[+]-Pre-Processing Directives - Rules 26 to 32 LI
ok Cancel |

2 For each JSF++ rule, specify one of these states:

State

Causes the verification to...

Error

End after the compile phase when this rule is violated.

Warning

Display warning message and continue verification

when this rule is violated.

Off

Skip checking of this rule.

Setting Up Project to Check Coding Rules

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

3 Click OK to save the rules and close the window.
The Save as dialog box opens.
4 In File, enter a name for your rules file.

5 Click OK to save the file and close the dialog box.

Note If your project uses a dialect other than ISO, some JSF++ coding rules
may not be completely checked. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

Excluding Files from JSF++ Checking

You can exclude files from JSF++ checking. For example, you may want to
exclude some included files.

To exclude files from JSF++ checking:

1 Click the button I—I to the right of the Files and directories to ignore
option.

The Files and directories to ignore (includes-to-ignore) dialog box opens.

4-25

4 Setting Up a Verification Project

[x|
~Files and directories to ignore [-includes-to-ignore]

COPolyspacetsourcesimath b
COPoly Spacetsourcesmatrix b

ChPalySpacetzourcestincludes

Ok Canicel |

2 Click the folder icon i‘
The Select a file or directory to include dialog box appears.
3 Select the files or directories you want to exclude.
4 Click OK.
The select files and directories appear in the list of files to ignore.

5 Click OK to close the dialog box.

4-26

Setting Up Project for Generic Target Processors

Setting Up Project for Generic Target Processors

In this section...
“Project Model Files” on page 4-27

“Creating Project Model Files” on page 4-28
“Viewing Existing Generic Targets” on page 4-28
“Defining Generic Targets” on page 4-29
“Deleting a Generic Target ” on page 4-31
“Common Generic Targets” on page 4-31

“Creating a Configuration File from a PolySpace Project Model File” on
page 4-33

Project Model Files

What Is a PolySpace Project Model File?

A PolySpace project model file is a project file that includes generic target
processors. You can use this file to share project information with your
development team.

Although you can populate a project with information, such as source files and
project options, from a project model file, you cannot run a verification with a
project model file. You must have a configuration file to run a verification.

Workflow for Using Project Model Files

A PolySpace project model file is a project file that includes generic target
processors. A development team uses this file to share project information.
The workflow is:

1 A team leader creates a project model file (. ppm). This file has the analysis
options for the project, including generic targets.

2 The team leader distributes the .ppm file to the team.

4-27

4 Setting Up a Verification Project

4-28

3 A developer opens the .ppm file. From this file, PolySpace software
populates the project parameters and the generic targets in the preferences.

4 The developer adds source files, include directories, and a results directory
to the project and saves it as a configuration file (.cfg).

5 The developer launches a verification with the.cfg file.

Creating Project Model Files

You use the PolySpace Launcher to create a PolySpace project model file.

To create a project model file:
1 Select File > New Project to create a new project.
2 Define the generic target, as described in the following sections.
3 Select File > Save project.
The Save the project as dialog box appears.
4 Select *.ppm from the Files of type menu.
5 In Session identifier, enter a name for your project model file.

6 Click OK to save the file and close the dialog box.

Viewing Existing Generic Targets
Generic targets that you create are listed in the Preferences dialog box.

To view existing generic targets:
1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the Generic targets tab.

Previously defined generic targets appear in the generic targets list.

Setting Up Project for Generic Target Processors

x

tarcetl

Edlit

Remove

034 | Apply Cancel

3 Click Cancel to close the dialog box.

Defining Generic Targets
If your application is designed for a custom target processor, you can configure

many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.
To configure a generic target:

To define a generic target:

1 In Analysis options, expand Target/Compilation.

2 Click the down arrow to open the Target processor type menu.

4-29

4 Setting Up a Verification Project

4-30

Sparc

sparc

mESk

e

i 306

c-167

----PET Generic----

3 Select mcpu... (Advanced).

The Generic target options dialog box appears.

H Generic target ophions

Enter the target name

Endianness

Char

Short

It

Lok

Long long

Float

Doubledong dauble
Paointer

Alignment

Bhits
o

i 0 i e B T i i |

16bitz= 5Zbitz Bdhits

r

w1 e

I 0 T B B

T

IL'rl'tIe endian

r

o G B T S T

)

Save

r-u.

b 0 i T i T i i |

=l

v Sighed

Cancel

4 In Enter the target name, enter a name for your target.

Setting Up Project for Generic Target Processors

5 Specify the appropriate parameters for your target, such as the size of basic
types, and alignment with arrays and structures.

For example, when the alignment of basic types within an array or
structure is always 8, it implies that the storage assigned to arrays and
structures is strictly determined by the size of the individual data objects
(without fields and end padding).

Note For more information, see “GENERIC ADVANCED TARGET
OPTIONS”in the PolySpace Products for C++ Reference.

6 Click Save to save the generic target options and close the dialog box.

Deleting a Generic Target

Generic targets that you create are stored as a PolySpace software preference.
Generic targets remain in your preferences until you delete them.

Note You cannot delete a generic target if it is the currently selected target
processor type for the project.

To delete a generic target:
1 Select Edit > Preferences.

The Preferences dialog box appears.
2 Select the Generic targets tab.
3 Select the target you want to remove.
4 Click Remove.

5 Click OK to apply the change and close the dialog box.

Common Generic Targets
The following tables describe the characteristics of common generic targets.

4-31

4 Setting Up a Verification Project

4-32

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char | short| int | long long | float | double| long | ptr char is | endian

long double
size 8 16 16 32 32 32 32 32 16/32 | unsigned| Big
alignment| 8 16/8 16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | 32/16/8 | N/A N/A
ST9 (GNU C compiler : gcc9 for ST9)
ST9 char | short| int | long long | float | double| long | pir char is | endian

long double
size 8 16 16 32 32 32 64 64 16/64 | unsigned| Big
alignment| 8 8 8 8 8 8 8 8 8 N/A N/A
Hitachi H8/300, H8/300L
Hitachi | char | short| int | long long | float | double| long | ptr char is | endian
H8/300; long double
H8/300L
size 8 16 16/32| 32 64 32 654 64 16 unsigned| Big
alignment| 8 16 16 16 16 16 16 16 16 N/A N/A
Hitachi H8/300H, H8S, H8C, H8/Tiny
Hitachi | char | short| int |long |long | float | double| long | ptr char is | endian
H8/300H, long double
H8S,
H8C,
H8/Tiny
size 8 16 16/ | 32 64 32 64 64 32 unsigned| Big

32
alignment| 8 16 32/ 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A
16

Setting Up Project for Generic Target Processors

The size of some basic types is configurable using the -int-is-32bits option,
compiler memory model option, and near/far pointer syntax.

The alignment of some basic types with arrays and structures is configurable
(depending on the compiler implementation or optimization options). For
example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is
strictly determined by the size of the individual data objects (without fields
and end padding).

The sign of char is configurable using -default-sign-of-char
[signed|unsigned].

Creating a Configuration File from a PolySpace
Project Model File

To run a verification, you must have a configuration file, not just a project

model file. However, you can create a configuration file from a project model
file.

To create a configuration file from a project model file:

1 Open the project model file.

Note When opening files, you can select Project Model (*.ppm) files in
the File of type section to view only project model files.

Opening the project model file populates the:
® Generic targets in the preferences

¢ Analysis options and other project information

2 Enter additional project information, such as the results directory and
source files.

4-33

4 Setting Up a Verification Project

4-34

Note If you enter the results directory and source files in the project
before you save it as a PolySpace project model file, then that information
1s saved in the file and appears in the project when you open the file.

3 Select File > Save project.

The Save the project as dialog box appears.
4 Enter a name for your configuration file.
5 Leave the default type as *.cfg.

6 Click OK to save the project and close the dialog box.

Emulating Your Runtime
Environment

e “Setting Up a Target” on page 5-2

* “Applying Data Ranges to External Variables and Stub Functions (DRS)”
on page 5-14

5 Emulating Your Runtime Environment

Setting Up a Target

In this section...

“Target/Compiler Overview” on page 5-2
“Specifying Target/Compilation Parameters” on page 5-2

“Predefined Target Processor Specifications (size of char, int, float,
double...)” on page 5-3

“Generic Target Processors” on page 5-5

“Compiling Operating System Dependent Code (OS-target issues)” on page
5-5

“Ignoring or Replacing Keywords Before Compilation” on page 5-9

“How to Gather Compilation Options Efficiently” on page 5-12

Target/Compiler Overview

Many applications are designed to run on specific target CPUs and operating
systems. The type of CPU determines many data characteristics, such as
data sizes and addressing. These factors can affect whether errors (such as
overflows) will occur.

Since some run-time errors are dependent on the target CPU and operating
system, you must specify the type of CPU and operating system used in the
target environment before running a verification.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Specifying Target/Compilation Parameters

The Target/Compilation options in the Launcher allow you to specify the
target processor and operating system for your application.

To specify target parameters for your project:

1 In the Analysis options section of the Launcher window, expand
Target/Compilation.

Setting Up a Target

2 The Target/Compilation options appear.

Mame Walue Internal narme

Analyzis options
eneral
f—]—TargeﬂCDmpilaﬂun

—Target processor type Sparc =l Harget

—Operating system target for PolySpace stubs Solarizs =1 ~Starget

—Defined Preprocessor Macros ... \D

—ndefined Preproceszar Macros .U

—Ihclude . Hnclude

—Cormmandizcript to apply to preprocessed files

. |-post-preproce ssing-command

—iCommandfzcript to apply after the end of the code verification

. fpost-analysis-caommand

FCompliance with standards

n:nl':.:'Span::e innier settings

reu:isiu:un.l’Su:aling

urt'rtasking

3 Specify the appropriate parameters for your target CPU and operating

system.

For detailed information on each Target/Compilation option, see
“Target/Compiler Options”in the PolySpace Products for C Reference.

Predefined Target Processor Specifications (size of

char, int, float, double...)

PolySpace products support many commonly used processors, as listed in the
table below. To specify one of the predefined processors, select it from the

Target processor type drop-down list.

If your processor is not listed, you can specify a similar processor that shares

the same characteristics.

5-3

5 Emulating Your Runtime Environment

5-4

Note The targets Motorola ST7, ST9, Hitachi H8/300, H8/300L, Hitachi
H8/300H, H8S, H8C, H8/Tiny are described in the next section.

Target char | short| int | long| long | float doublé long | ptr| char is | Endian | ptr diff
long double type
sparc 8 16 32 | 32 64 32 64 128 32 | signed Big int, long
1386 8 16 32 | 32 64 32 64 96 32 | signed Little int, long
c-167 8 16 16 | 32 32 32 64 64 16 | signed Little int
m68k / 8 16 32 | 32 64 32 64 96 32 | signed Big int, long
ColdFire!
powerpc 8 16 32 | 32 64 32 64 128 32 | unsigned| Big int, long
If your target processor does not match the characteristics of any processor
described above, contact The MathWorks technical support for advice.
The following table describes target processors that are not fully supported by
PolySpace products. Nevertheless, the target processor mentioned in column
“Nearest Processor” can be chosen for a Server verification, knowing that
information in red is not compatible in both target processors.
Target char short| int | long| long floc||| double long | ptr | charis | ptr diff | Nearest
long doubl type target
processor
tms470rix 8 16 32 | 32 N/A | 32 64 64 32 signed | int, 1386
long
mpc555 8 16 32 | 32 64 32 64 64 32 signed | int, 1386
long
hc12 8 16 16 | 32 32 32 32 32 16 signed | int c-167

1. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor

Setting Up a Target

Generic Target Processors

If your application is designed for a custom target processor, you can configure
many basic characteristics of the target by selecting the PST Generic target,
and specifying the characteristics of your processor.

For more information, see “Setting Up Project for Generic Target Processors”
on page 4-27.

Compiling Operating System Dependent Code
(OS-target issues)

This section describes the options required to compile and verify code designed
to run on specific operating systems. It contains the following:

e “List of Predefined Compilation Flags” on page 5-5

e “My Target Application Runs on Linux” on page 5-8

e “My Target Application Runs on Solaris” on page 5-8

e “My Target Application Runs on Vxworks” on page 5-9

e “My Target Application Does Not Run on Linux, vxworks nor Solaris” on
page 5-9

List of Predefined Compilation Flags

The following table shown for each 0S-target, the list of compilation flags
defined by default, including pre-include header file (see also include):

-OS-target Compilation flags -include file Minimum set of options
Linux -D__SIZE_TYPE__ =unsigned <product_dir>/ polyspace-[desktop-]cpp
-D__PTRDIFF_TYPE__ =int cinclude/ -0S-target Linux \
-D__inline__=inline pst-linux.h
-D__signed__=signed -I <product_dir>/include/
-D__gnuc_va_list=va_list include-1linux \
-D__ STL_CLASS_PARTIAL
SPECIALIZATION -I <product_dir>/include/
-D__GNU_SOURCE include-linux/next Where
-D__STDC__ -D__ELF__ the PolySpace product has
-Dunix -D__unix

5 Emulating Your Runtime Environment

-OS-target Compilation flags -include file Minimum set of options
-D__unix__ -Dlinux been installed in the directory
-D__linux -D__linux__ <product_dir>

-Di386 -D__i386
-D__i386__ -Di686
-D__i686 -D__ 1686
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

vxWorks -D__SIZE_TYPE__ =unsigned <product_dir>/ polyspace-[desktop-]cpp

-D__PTRDIFF_TYPE__ =int | cinclude/ \ -0S-target vxworks
-D__inline__=inline pstvxworks. h \ -I /your_path_to/
-D__signed__=signed Vxworks_include_directories

-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_

SPECIALIZATION
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__STDC
-D__GNU_SOURCE
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun

-D__sun
-D__sun__
-D__svr4
-D__SVR4

5-6

Setting Up a Target

-OS-target

Compilation flags

-include file

Minimum set of options

visual
/visual6

-D__SIZE_TYPE_ =unsigned
-D__ PTRDIFF_TYPE_ =int
-D__ STRICT_ANSI__
-D__inline_ =inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-D__STL_CLASS_PARTIAL_
SPECIALIZATION

<product_dir>/

cinclude/
pstvisual.

h

Solaris

-D__SIZE_TYPE_ =unsigned
-D__ PTRDIFF_TYPE_ =int
-D__inline_ =inline
-D__signed__=signed
-D__gnuc_va_list=va_list

-D__ STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC

-D__ GCC_NEW_VARARGS__
-Dunix

-D__unix

-D__unux__

-Dsparc

-D__sparc

-D__sparc__

-Dsun

-D__sun

-D__sun__

-D__svr4

-D__SVR4

If PolySpace runs on a Linux
machine:

polyspace-[desktop-]cpp \
-0S-target Solaris \

-1
/your_path_to_solaris_include

If PolySpace runs on a Solaris
machine:

polyspace-cpp \
-0S-target Solaris \
-I /usr/include

no-
predefined-
(O]

-D__SIZE_TYPE_ =unsigned
-D__ PTRDIFF_TYPE_ =int
-D__ STRICT_ANSI__
-D__inline_ =inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE

polyspace-[desktop-]cpp \
-0S-target no-predefined-0S
\

-I /your_path_to/
MyTarget_include_directories

5-7

Emulating Your Runtime Environment

-OS-target

Compilation flags -include file Minimum set of options

-D__STL_CLASS_PARTIAL_
SPECIALIZATION

Note This list of compiler flags is written in every log file.

My Target Application Runs on Linux
The minimum set of options is as follows:

polyspace-cpp \
-0S-target Linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux \
-I /usr/local/PolySpace/CURRENT-VERSION/include/include-1linux/next \

where the PolySpace product has been installed in the directory
lusr/local/PolySpace/ CURRENT-VERSION.

If your target application runs on Linux® but you are launching your
verification from Windows, the minimum set of options is as follows:

polyspace-cpp \
-0S-target Linux \
-I POLYSPACE_C\Verifier\include\include-linux \
-I POLYSPACE_C\Verifier\include\include-linux\next \

where the PolySpace product has been installed in the directory POLYSPACE_C.

My Target Application Runs on Solaris
If PolySpace software runs on a Linux machine:
polyspace-cpp \
-0S-target Solaris \
-I /your_path_to_solaris_include

If PolySpace runs on a Solaris™ machine:

Setting Up a Target

polyspace-cpp \
-0S-target Solaris \
-I /usr/include

My Target Application Runs on Vxworks
If PolySpace runs on either a Solaris or a Linux machine:
polyspace-cpp \

-0S-target vxworks \
-I /your_path_to/Vxworks_include_directories

My Target Application Does Not Run on Linux, vxworks nor
Solaris
If PolySpace runs on either a Solaris or a Linux machine:

polyspace-cpp \

-0S-target no-predefined-0S \
-I /your_path_to/MyTarget_include_directories

Ignoring or Replacing Keywords Before Compilation

You can ignore noncompliant keywords such as “far” or 0x followed by an
absolute address. The template provided in this section allows you to ignore
these keywords.

To ignore keywords:

1 Save the following template in c:\PolySpace\myTpl.pl

2 In the Target/Compilation options, select Command/script to apply to
preprocessed files.

3 Select myTpl.pl using the browse button.

For more information, see -post-preprocessing-command.

Content of the myTpl.pl file

#!/usr/bin/perl

5 Emulating Your Runtime Environment

HHBBBBHHAR BB R HH AR RHH R BB R AT BB R AR R AR B HH R R R R AR R HH
Post Processing template script

#

HHBBBBHHAR BB HHH AR R R H R R H AR BB R AR R B R H R R R H AR RS HH
Usage from Launcher GUI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl

3) Windows: \Verifier\tools\perl\win32\bin\perl.exe <pathtoscript>\
PostProcessingTemplate.pl

#

HHRBRBHHAR BB R HH B R BB H R B H AR BB R AR R TR B R R R R H AR RS

$version = 0.1;

$INFILE = STDIN;
$OUTFILE = STDOUT;

while (<$INFILE>)
{

Remove far keyword
s/far//;

Remove "@ OxFE1" address constructs
s/\@\sOx[A-F0-91*//g;

Remove "@OXFE1" address constructs
s/\@Ox[A-F0-9]*//g;

Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\ (\ (unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

Convert current line to lower case
$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

Setting Up a Target

Perl Regular Expression Summary

HARBRAHHARBHHHH AR R AR AR RHH AR BB H AR AR HH A AR A HHHRBR R

#

Metacharacter What it matches

HARBRHHHARBHHHH AR BB AR AR R HARRBHHH AR B R A A A AR B HHHA BB RS A

o3 H I I W O O W O O W O I W I W W oI W W O W O O W O O W W W W O W W

Single Characters

. Any character except newline

[a-z0-9] Any single character in the set
[*a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as ["0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

Whitespace Characters

\s Whitespace character

\S Non-whitespace character
\n newline

\r return

\t tab

\f formfeed

\b backspace

Anchored Characters

\B word boundary when no inside []
\B non-word boundary

~ Matches to beginning of line

$ Matches to end of line

Repeated Characters

x? 0 or 1 occurence of x

Xx* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively

to|be|great One of "to", "be" or "great"

Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses

5-11

5 Emulating Your Runtime Environment

5-12

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses
HURHHBHHBHHHBHHBHH AR SRR BB R AR TR H RS HBHH TR H B H TR SR B H TS
Back referencing

e.g. swap first two words around on a line
red cat -> cat red

#
#
#
#
s/ (\wt) (\w+)/$2 $1/;
#

HARBRAAHARBHAHARRBHAHARBRAHAARBHAH AR BB AHAARBHAH AR HAREH

How to Gather Compilation Options Efficiently

The code is often tuned for the target. Rather than applying minor changes to
the code, create a single polyspace.h file which will contain all target specific
functions and options. The -include option can then be used to force the
inclusion of the polyspace.h file in all source files under verification.

Where there are missing prototypes or conflicts in variable definition, writing
the expected definition or prototype within such a header file will yield
several advantages.

Direct benefits:
¢ The error detection is much faster since it will be detected during
compilation rather than in the link or subsequent phases.

¢ The position of the error will be identified more precisely.

¢ There will be no need to modify original source files.
Indirect benefits:

¢ The file is automatically included as the very first file in all original .c files.

¢ The file can contain much more powerful macro definitions than simple
-D options.

¢ The file is reusable for other projects developed under the same
environment.

Setting Up a Target

Example

This is an example of a file that can be used with the include option.

// The file may include (say) a standard include file implicitly
// included by the cross compiler

#include <stdio.h>

#include "another_file.h"

/! Generic definitions, reusable from one project to another
#define far
#define at(x)

// A prototype may be positioned here to aid in the solution of
a link phase conflict between

// declaration and definition. This will allow detection of the
// same error at compilation time instead of at link time.

// Leads to:

/] - earlier detection

/] - precise localization of conflict at compilation time

void f(int);

// The same also applies to variables.

extern int x;

// Standard library stubs can be avoided,

// and 0S standard prototypes redefined.
#define _ polyspace_no_sscanf

#define _ polyspace_no_fgetc

void sscanf(int, char, char, char, char, char);
void fgetc(void);

5-13

5 Emulating Your Runtime Environment

5-14

Applying Data Ranges to External Variables and Stub
Functions (DRS)

In this section...

“Overview of Data Range Specifications (DRS)” on page 5-14
“Specifying Data Ranges” on page 5-14

“File Format” on page 5-15

“Variable Scope” on page 5-17

“Performing Efficient Module Testing with DRS” on page 5-19

“Reducing Oranges with DRS” on page 5-20

Overview of Data Range Specifications (DRS)

By default, PolySpace verification assumes that all data inputs are set to their
full range. Therefore, nearly any operation on these inputs could produce an
overflow. The Data Range Specifications (DRS) module allows you to set
external constraints on global variables and stub function return values.
This can substantially reduce the number of orange checks in the verification
results.

Note You can only apply data ranges to variables with external linkages (see
“Variable Scope” on page 5-17) and stubbed functions.

Specifying Data Ranges
You activate the DRS feature using the option Variable range setup
(-data-range-specification).

To use the DRS feature:

1 Create a DRS file containing the list global variables (or functions) and
their associated data ranges, as described in “File Format” on page 5-15.

2 In the Analysis options section of the Launcher window, select PolySpace
inner settings > Stubbing.

Applying Data Ranges to External Variables and Stub Functions (DRS)

3 In the Variable range setup parameter, select the DRS file that you
want to use.

File Format

The DRS file contains a list of global variables and associated data ranges.
The point during verification at which the range is applied to a variable is
controlled by the mode keyword: init, permanent, or globalassert.

The DRS file must have the following format:

variable name min_value max_value <init|permanent|globalassert>
function_name.return min_value max_value permanent

variable name val_min val_max <init|permanent|globalassert>

® variable _name — The name of the global variable.
® min_value — The minimum value for the variable.

® min_value and max_value — The minimum and maximum values for the
variable. You can use the keywords "min" and "max" to denote the minimum
and maximum values of the variable type. For example, for the type long,
min and max correspond to -2731 and 2731-1 respectively.

® init — The variable is assigned to the specified range only at initialization,
and keeps it until first write.

® permanent — The variable is permanently assigned to the specified range.
If the variable is assigned outside this range during the program, no
warning 1s provided. Use the globalassert mode if you need a warning.

® globalassert — After each assignment, an assert check is performed,
controlling the specified range. The assert check is also performed at
global initialization.

e function_name — The name of the stub function.
Tips
® You can use the keywords "min" and "max" to denote the minimum and

maximum values of the variable type. For example, for the type long, min
and max correspond to -2°31 and 2”31-1 respectively.

5-15

5 Emulating Your Runtime Environment

® You can use hexadecimal values. For example, x 0x12 0x100 init.

e Supported column separators are tab, comma, space, or semi-column.
® To insert comments, use shell style “#”.

¢ Functions must be stubbed functions (no provided body).

® permanent is the only supported mode for functions.

¢ Function names may be C or C++ functions with blanks or commas. For
example, f(int, int).

® Function names can be specified in the short form (“f") as long as no
ambiguity exists.

e The function returns either an integral (including enum and bool) or
floating point type. If the function returns an integral type and you specify
the range as a floating point [v0.x, v1.y], the software applies the integral
interval [(int)v0-1, (int)v1+1].

Example
In the following example, the global variables are named x, y, z, w, array,
and v.

x 12 100 init # x is defined between [12;100] at \

initialisation

y 0 10000 permanent # y is permanently defined between \
[0,10000] even any possible assignment.

z 0 1 globalassert # z is checked in the range [0;1] after \
each assignment

w min max permanent # w is volatile and full range on its \
declaration type

v 0 max globalassert # v is positive and checked after each \
assignment.

arrayOfInt -10 20 init # All cells are defined between [-10;20] \
at initialisation

s1.id 0 max init # s1.id is defined between [0;2"31-1] at \
initialisation.

array.c2 min 1 init # All cells array[i].c2 are defined \
between [-2731;1] at initialisation

car.speed 0 350 permanent # Speed of Struct car is permanently \

defined between 0 and 350 Km/h

5-16

Applying Data Ranges to External Variables and Stub Functions (DRS)

bar.return -100 100 permanent # function bar returns -100..100

Variable Scope

DRS supports variables with external linkages, const variables, and defined
variables. In addition, extern variables are supported with the option
-allow-undef-variables.

Static variables are not supported by DRS. The following table summarizes
possible uses:

init permanent globalassert comments
Integer Ok Ok Ok char, short, int,
enum, long and
long long

If you define

a range in
floating point
form, rounding is
applied.

Real Ok Ok Ok float, double
and long double

If you define

a range in
floating point
form, rounding is

applied.

Volatile No effect Ok Full range Only for int and
real

Structure field Ok Ok Ok Only for int

and real fields,
including arrays
or structures of
int or real fields
(see below)

5-17

5 Emulating Your Runtime Environment

init permanent globqlqsserf comments

Structure field in | Ok No effect No effect Only when

array leaves are int or
real. Moreover
the syntax is
the following:
<array_name>.
<field_name>

Array Ok Ok Ok Only for int
and real
fields, including
structures or
arrays of integer
or real fields (see
below)

Pointer No effect No effect No effect

Union field No effect No effect No effect

Complete No effect No effect No effect

structure

Array cell No effect No effect No effect Example:
array|[0],
array[10] ...

Stubbed function | No effect Ok No effect Stubbed function

return returning

integral or
floating point

Note Every variable (or function) and associated data range will be written
in the log file at compilation time of a PolySpace verification. If PolySpace
software does not support the variable, a warning message is displayed.

Applying Data Ranges to External Variables and Stub Functions (DRS)

Note DRS can initialize arrays of structures, structures of arrays, etc., as the
long as the last field is explicit (structures of arrays of integers, for example).

However, DRS cannot initialize a structure itself — you can only initialize the
fields. For example, "s.x 20 40 init" is valid, but "s 20 40 init" is not
(because PolySpace cannot determine what fields to initialize).

Performing Efficient Module Testing with DRS

DRS allows you to perform efficient static testing of modules. This is
accomplished by adding design level information missing in the source-code.

A module can be seen as a black box having the following characteristics:

® Input data are consumed

® Qutput data are produced

® Constant calibrations are used during black box execution influencing
intermediate results and output data.

Using the DRS feature, you can define:

® The nominal range for input data

® The expected range for output data

® The generic specified range for calibrations

These definitions then allow PolySpace software to perform a single static
verification that performs two simultaneous tasks:

® answering questions about robustness and reliability

¢ checking that the outputs are within the expected range, which is a result

of applying black-box tests to a module

In this context, you assign DRS keywords according to the type of data
(inputs, outputs, or calibrations).

5-19

5 Emulating Your Runtime Environment

Type of Data | DRS Mode Effect on Results Why? Oranges | Selectivity
Inputs permanent Reduces the number | Input data that were | | 1
(entries) of oranges, (compared full range are set to a
with a standard smaller range.
PolySpace verification)
Outputs globalassert| Increases the number | More verification is i —
of oranges, (compared introduced into the
with a standard code, resulting in
PolySpace verification) | both more orange
checks and more
green checks.
Calibration Increases the number | Data that were i l
of oranges, (compared constant are set to
with a standard a wider range.

PolySpace verification)

5-20

Reducing Oranges with DRS

When performing robustness (worst case) verification, data inputs are always
set to their full range. Therefore, every operation on these inputs, even a
simple “one_input + 10” can produce an overflow, as the range of one_input
varies between the min and the max of the type.

If you use DRS to restrict the range of “one-input” to the real functional
constraints found in its specification, design document, or models, you can
reduce the number of orange checks reported on the variable. For example, if
you specify that “one-input” can vary between 0 and 10, PolySpace software
will definitely know that:

® one_input + 100 will never overflow

¢ the results of this operation will always be between 100 and 110

Applying Data Ranges to External Variables and Stub Functions (DRS)

This not only eliminates the local overflow orange, but also results in more

accuracy in the data. This accuracy is then propagated through the rest of
the code.

Using DRS removes the oranges located in the red circle below.

% of oranges

Oranges due fo
- complexity

Oranges due fo
variables sef fo
full range

Size (lines of code)

Why Is DRS Most Effective on Module Testing?

Removing oranges caused by full-range (worst-case) data can drastically
reduce the total number of orange checks, especially when used on
verifications of small files or modules. However, the number of orange checks
caused by code complexity is not effected by DRS. For more information on
oranges caused by code complexity, see “Considering the Effects of Application
Code Size” on page 8-38, and “An Ideal Application Size” on page 8-36.

This section describes how DRS reduces oranges on files or modules only.

Example

The following example illustrates how DRS can reduce oranges. Suppose that
in the real world, the input “My_entry” can vary between 0 and 10.

5-21

5 Emulating Your Runtime Environment

5-22

PolySpace verification produces the following results: one with DRS and

one without.

Without DRS

With DRS — 2 Oranges Removed + Return
Statement More Accurate

My entry;
Function (void)

X ¥

x = My entry ¢ 100;
X = = 1;
#ipragma Inspecticon Folint =
return =;

0 I

™ S = ¢ B Y N o o Y S P R 0 O
=
it

int

My entry;}
int Function(veid)
{

int xi

® = My
E=x + 1;
fpragma Inspection Point X
return x|

10 1

100;

Mo =] iy W sk) [e

e With “My_entry“ being full range, the
addition “+” is orange,

¢ the result “x” is equal to all values between
[min+100 max]

® Due to previous computations, x+1 can here

overflow too, making the addition “+’orange.

e With “My_entry” being bounded to [0,10],
the addition “+” is green

e the result “x” is equal to [100,110]

¢ Due to previous computations, x+1 can NOT
overflow here, making the addition “+” green
again.

Applying Data Ranges to External Variables and Stub Functions (DRS)

Without DRS

With DRS — 2 Oranges Removed + Return

Statement More Accurate

And the returned result is between
[min+101 max]

And the returned result is between
[101,111]

H drs. Function.IPT. & E] E| [')Z|

in "drs .. ling & column &
Source code

JC. " T 3 =~ S R ul 1 = 1,
fpragma Inspection Point

ingpection point computed range:
[-2**31+101<=Function:/=2**31-1}

B drs.Function.PT.6 [|[B][X]

in "drz.c" line 8 colurmn 2
Source code

B e bt 2 Tl ek & 2 - T~ - - g
fipragma Inspection Point x

e

inspection point computed range:
{101<=Function:x<=111}

5-23

5 Emulating Your Runtime Environment

5-24

Preparing Source Code for
Verification

® “Stubbing” on page 6-2
® “Preparing Code for Variables” on page 6-15
® “Preparing Code for Built-in Functions ” on page 6-19

* “Types Promotion” on page 6-21

6 Preparing Source Code for Verification

6-2

Stubbing

In this section...

“Stubbing Overview” on page 6-2

“Manual vs. Automatic Stubbing” on page 6-2
“Deciding which Stub Functions to Provide” on page 6-3
“Stubbing Examples” on page 6-6

“Specifying Call Sequence” on page 6-8

“Constraining Data with Stubbing” on page 6-9

“Recoding Specific Functions” on page 6-12

Stubbing Overview

A function stub is a small piece of code that emulates the behavior of a
missing function. Stubbing is useful because it allows you to verify code before
all functions have been developed.

Manual vs. Automatic Stubbing

The approach you take to stubbing can have a significant influence on the
speed and precision of your verification.

There are two types of stubs in PolySpace verification:

* Automatic stubs — When you attempt to verify code that calls an unknown
function, the software automatically creates a stub function based on the
function’s prototype (the function declaration). Automatic stubs generally
do not provide insight into the behavior of the function.

e Manual stubs — You create these stub functions to emulate the behavior of
the missing functions, and manually include them in the verification with
the rest of the source code.

By default, PolySpace software automatically stubs functions. However, in
some cases you may want to manually stub functions instead. For example,
when:

Stubbing

® Automatic stubbing does not provide an adequate representation of the
code it represents— both in regards to missing functions and assembly
instructions.

® The entire code is to be provided, which may be the case when verifying
a large piece of code. When the verification stops, it means the code is
not complete.

®* You want to improve the selectivity and speed of the verification.

® You want to gain precision by restricting return values generated by
automatic stubs.

® You need to deal with a function that writes to global variables.

For Example:

void main(void)

{
a=1;
b=0;
a_missing_function(&a, b);
b =1 a;

}

Due to the reliance on the software’s default stub, the division is shown
with an orange warning because a is assumed to be anywhere in the full
permissible integer range (including 0). If the function was commented out,
then the division would be a green "/ ". A red "/ " could only be achieved
with a manual stub.

Deciding which Stub Functions to Provide

In the following section, procedure_to_stub can represent either procedure or
a sequence of assembly instructions which would be automatically stubbed in
the absence of a manual stub.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the

remainder of the system.

Consider procedure_to_stub, If it represents:

6-3

6 Preparing Source Code for Verification

6-4

* A timing constraint (such as a timer set/reset, a task activation, a delay,
or a counter of ticks between two precise locations in the code) then you
can stub it to an empty action (void procedure(void)). PolySpace needs
no concept of timing since it takes into account all possible scheduling
and interleaving of concurrent execution. There is therefore no need to
stub functions that set or reset a timer. Simply declare the variable
representing time as volatile.

® An I/O access: maybe to a hardware port, a sensor, a read/write of a file,
a read of an EEPROM, or a write to a volatile variable. There is no need
to stub a write access. If you wish to do so, simply stub a write access to
an empty action (void procedure(void)). Stub read accesses to "read all
possible values (volatile)".

* A write to a global variable. In this case, you may need to consider which
procedures or functions write to it and why. Do not stub the concerned
procedure_to_stub if:

= The variable is volatile;

= The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub by hand if

= The variable is a regular variable read by other procedures or functions.

= A read from a global variable: If you want PolySpace to detect that it is a
shared variable, you need to stub a read access. This is easily achieved
by copying the value into a local variable.

In general, follow the Data Flow and remember that:

® PolySpace only cares about the C code which is provided;

® PolySpace need not be informed of timing constraints because all possible
sequencing is taken into account;

® You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example

The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project.) The missing function

Stubbing

copies the value of the src parameter to dest so there would be a division by
zero - a runtime error - at run time.

void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b=11/ a;

}

Due to reliance on the PolySpace default stub, the division is shown with an
orange warning because a is assumed to be anywhere in the full permissible
integer range (including 0). If the function was commented out, then the
division would be a green "/". A red "/ " could only be achieved with a manual
stub.

Default Stubbing Manual Stubbing Function Ignored

void main(void) void a_missing_function void a_missing_function

{ (int *x, int vy;) (int *x, int vy;)

a=1; {*x=y;1 {1}

b = 0;

a_missing_function(&a, void main(void) void main(void)

b); { {

b=17/ a; A= 3 a=1;

// orange division b = 0; b = 0;

} a_missing_function(&a, a_missing_function(&a,
b); b);
b=17/ a; b=17/ a;
// red division // green division

Due to the reliance on the software’s default stub, the assembly code is
ignored and the division " /" is green. The red division "/" could only be
achieved with a manual stub.

Summary

Stub manually: to gain precision by restricting return values generated by
automatic stubs; to deal with a function which writes to global variables.

6 Preparing Source Code for Verification

Stub automatically in the knowledge that no runtime error will be ever
introduced by automatic stubbing; to minimize preparation time.

Stubbing Examples

Example: Specification

The following examples consider the pros and cons of manual and automatic
stubbing.

Here is the first example:

typedef struct _c {

int
int
int

P

int
int

cnx_id;
port;

data;
connection ;

Lib_connection_create(T_connection *in_cnx)
Lib_connection_open (T_connection *in_cnx)

H

H

File: connection_lib

Function: Lib_connection_create

param in None
param in/out in_cnx all fields might be changed in case of a success
returns int 0 : failure of connection establishment

1 : success

Note Default stubbing is suitable here.

Here are the reasons why:

¢ The content of the in_cnx structure might be changed by this function.

¢ The possible return values of 0 or 1 compared to the full range of an integer wont have much
impact on the Run-Time Error aspect. It is unlikely that the results of this operation will be
used to compute some mathematical algorithm. It is probably a Boolean status flag and if

6-6

Stubbing

File: connection_lib Function: Lib_connection_create

so is likely to be stored and compared to O or 1. The default stub would therefore have no
detrimental effect.

File: connection_lib Function: Lib_connection_open
param in T_connection in_cnx->cnx_id is the only parameter used
*in_cnx to open the connection, and is a read-only
parameter.

cnx_id, port and data remain unchanged

param in/out None

returns int 0 : failure of connection establishment

1 : success

Note Default stubbing works here but manual stubbing would give more benefit.

Here are the reasons why:

¢ For the return value, default stubbing would be applicable as explained in the previous
example.

® Since the structure is a read-only parameter, it will be worth stubbing it manually to
accurately reflect the behavior of the missing code. Benefits: PolySpace will find more red
and gray code

Note Even in the examples above, it concerns some C code like; stubs of
functions members in classes follow same behavior.

Colored Source Code Example

1 typedef struct _c {
2 int a;
3 int b;

6 Preparing Source Code for Verification

6-8

4 P

5

6 void send_message(T *);

7 void main(void)

8 {

9 int i;

10 T x = {10, 20};

11 send_message (&X) ;

12 i= x. x.a; // orange with the default stubbing
13 }

Suppose that it is known that send_message does not write into its argument.
The division by x.a will be orange if default stubbing is used, warning of

a potential division by zero. A manual stub which accurately reflects the
behavior of the missing code will result in a green division instead, thus
increasing the selectivity.

Manual stubbing examples for send_message:

void send_message(T *) {}

In this case, an empty function would be a sound manual stub.

Specifying Call Sequence

PolySpace software verifies every function in any order. This means that in
some particular situations, a function “f” might be called before a function
“g”. In the default usage, PolySpace assumes that “f” and “g” can be called
in any order. If some actions set by “f” must be executed before “g” is called,
writing a main which will call “f” and “g” in the exact order will bring a

higher selectivity.
Colored Source Code Example

With the default launching mode of PolySpace, no problem will be highlighted
on the following example. With a bit of setup, more bugs can be found.

static char x;
static int y;

Stubbing

void f(void)

~~

y = 300;
}

void g(void)

{
X =vy; // red or green OVFL?
}

With knowledge of the relative call sequence between g and f: if g is called
first, the assignment is green, otherwise its red. Thanks to the exact call
order, an attempt to place 300 in a char fails, displaying a red.

Example of Call Sequence

void main(void)

Simply create a main that calls in the desired order the list of functions from
the module.

Constraining Data with Stubbing

e “Default Behavior of Global Data” on page 6-9
® “Constraining the Data” on page 6-10

® “Applying the Technique” on page 6-10

® “Integer Example” on page 6-11

Default Behavior of Global Data
Initially, consider how PolySpace handles the verification of global variables.

There is a maximum range of values which may be assigned to each variable
as defined by its type. By default, PolySpace assigns that full range for each
global variable, ensuring that a meaningful verification of such a variable can

6 Preparing Source Code for Verification

6-10

take place even when the functions that write to it are not included. If a
range of values was not considered in these circumstances, such a variable
would be assumed to have a value of zero throughout.

This default launching mode is often adequate, but it is sometimes useful to
specify that the range of values which may be assigned to some variables

1s to be limited to what is appropriate on a functional level. These ranges
will be propagated to the whole call tree, and hence will limit the number of
“impossible values” which are considered throughout the verification.

This thinking does not just apply to global variables; it is equally appropriate
where such a variable is passed as a parameter to a function, or where return
values from stubbed functions are under consideration.

To some extent, the effectiveness of this technique is limited by compromises
made by PolySpace to deal with issues of code complexity. For instance, it
cannot be assumed that all of these ranges will be propagated throughout
all function calls. Sometimes, perhaps as a result of complex function
interactions or constructions where PolySpace is known to be imprecise, the
potential value of a variable will assume its full “type” range despite this
technique having been applied.

Constraining the Data

PolySpace experience is that restricting such as global variables to a
functional range is a useful technique. However, it is not always fruitful
and it is therefore recommended only where its application is not too labour
intensive - that is, where its implementation can be automated.

The technique therefore requires

® A knowledge of the variables and the maximum ranges they may take
in practice.

e A data dictionary in electronic format from which the variable names and
their minimum and maximum values can be extracted.

Applying the Technique
To apply the technique:

Stubbing

1 Create the range setting stubs:
a create 6 functions for each type (8,16 or 32 bits, signed and unsigned)
b declare 6 global volatile variables for each type

¢ write the functions which returns sub-ranges (an example follows)
2 Gather the initialization of all relevant variables into a single procedure

3 Call this procedure at the beginning of the main. This should replace any
existing initialization code.

Integer Example

volatile int tmp;
int polyspace_return_range(int min_value, int max_value)
{

int ret_value;

ret_value = tmp;
assert (ret_value>=min_value && ret_value<=max_value);

return ret_value;

}

void init_all(void)

{

x1 = polyspace_return_range(1,10);
x2 = polyspace_return_range(0,100);
x3 = polyspace_return_range(-10,10);
}

void main(void)

{
init_all();

while(1)

{
if (tmp) functioni();

if (tmp) function2();

6-11

6 Preparing Source Code for Verification

6-12

Recoding Specific Functions

Once data ranges have been specified (above), it may be beneficial to recode
some functions in support of them.

Sometimes, perhaps as a result of complex function interactions or
constructions where PolySpace is known to be imprecise, the potential value
of a variable will assume its full “type” range data ranges having been
restricted. Recoding those complex functions will address this issue.

Identify in the modules:

¢ API which read global variables through pointers
Replace this API:

typedef struct _points {

int x,y,nb;
char *p;
3T

#define MAX_Calibration_Constant_1 7
char Calibration_Constant_1[MAX_Calibration_Constant_1] = \
{1, 50, 75, 87, 95, 97, 100} ;
T Constant_1 = { 0, O,
MAX_Calibration_Constant_1,
&Calibration_Constant_1[0] } ;

read_calibration(T * in, int index)

{

if ((index <= in->nb) && (index >=0)) return in->p[index];

}

void interpolation(int 1)

{

int a,b;

Stubbing

a= read_calibration(&Constant_1,1i);

}

With this one:

char Constant_1 ;
#define read_calibration(in,index) *in

void main(void)

{

Constant_1 = polyspace_return_range(1, 100);
}

void interpolation(int 1)

{

int a,b;

a= read_calibration(&Constant_1,1i);

}

¢ Points in the source code which expand the data range perceived by
PolySpace

¢ Functions responsible for full range data, as shown by the VOA (Value
on assignment) check.

if direct access to data is responsible, define the functions as macros.

#define read_from_data(param) read_from_data##param

int read_from_data_my_globali(void)
{ return [a functional range for my_globali]; }

Char read_from_data_my_global2(void)
{1

¢ stub complicated algorithms, calibration read accesses and API functions
reading global data - as usual. For instance, if an algorithm is iterative -
stub it.

e variables

6-13

6 Preparing Source Code for Verification

= where the data range held by each element of an array is the same,
replace that array with a single variable.

= where the data range held by each element of an array differs, separate
it into discrete variables.

6-14

Preparing Code for Variables

Preparing Code for Variables

In this section...

“How are Variables Initialized” on page 6-15
“Data and Coding Rules” on page 6-16
“Variables: Declaration and Definition” on page 6-16

“How Can I Model Variable Values External to My Application?” on page
6-17

How are Variables Initialized

Consider external, volatile and absolute address variable in the following
examples.

Extern

PolySpace works on the principle that a global or static extern variable could
take any value within the range of its type.

extern int x;

int y;
y =1/ x; // orange because x ~ [-2731, 2731-1]
y =1/ x; // green because x ~ [-2731 -1] U [1, 2"31-1]

Refer to Chapter 9, “Reviewing Verification Results” for more information
on color propagation.

For extern structures containing field(s) of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default

behavior is that these pointers don’t point to any valid function. For results to
be meaningful here, you may well need to define these variables explicitly.

Volatile

volatile int x; // x ~ [-2731, 2731-1], although x has not been
initialized

¢ [f x is a global variable, the NIV is green

6-15

6 Preparing Source Code for Verification

6-16

e If x is a local variable, the NIV 1s always orange

Absolute Addressing

The content of an absolute address is always considered to be potentially
uninitialized (orange NIV):

#define X (* ((int *)0x20000))

* X = 100;

ey =1/ X; // NIV on X is orange
® int *p = (int *)0x20000;

® *p = 100;

y =1/ *p ; // NIV on *p is orange

Data and Coding Rules

Data rules are design rules which dictate how modules and/or files interact
with each other.

For instance, consider global variables. It is not always apparent which
global variables are produced by a given file, or which global variables are
used by that file. The excessive use of global variables can lead to resulting
problems in a design, such as

¢ File APIs (or function accessible from outside the file) with no procedure
parameters;

¢ The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and/or output
values.

Variables: Declaration and Definition

The definition and declaration of a variable are two discrete but related
operations which are frequently confused.

Declaration
A declaration provides information about the type of the function or variable.

Preparing Code for Variables

¢ for a function, the prototype: int f(void);
e for an external variable: extern int x;

If the function or variable is used in a file where it has not been declared, a
compilation error will result.

Definition
A definition provides:
e for a function, the body of the function has been written: int f(void)
{ return 0; }
¢ for a variable, a part of memory has been reserved for the variable: int x;

or extern int x=0;

When a variable is not defined, the -allow-undef-variable is required to
start the verification. Where that option is used, PolySpace will consider the
variable to be initialized, and to potentially take any value in its full range
(see “How are Variables Initialized” on page 6-15 section).

When a function is not defined, it is stubbed automatically.

How Can | Model Variable Values External to My
Application?

There are three main considerations.

e Usage of volatile variable;

e Express that the variable content can change at every new read access;
® Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect
following axiom:

"if I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

6-17

6 Preparing Source Code for Verification

6-18

Thus the value of a volatile variable is "unknown". It can be any value that
can be represented by a variable of its type, and that value can change at any
time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for PolySpace.

int return_random(void)

{

volatile int random; // random ~ [-2731, 2731-1], although
// random is not initialized

int y;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]

random = 100;

y =1 / random; // division and init orange because
// random ~ [-2731, 2731-1]
return random; // random ~ [-2"31, 2731-1]

Preparing Code for Built-in Functions

Preparing Code for Built-in Functions

In this section...

“Overview ” on page 6-19

“Stubs of stl Functions” on page 6-19

“Stubs of libc Functions” on page 6-19

Overview

PolySpace stubs all functions which are not defined within the verification.
PolySpace provides for all the functions defined in the stl, in the standard libc,
an accurate stub taking into account functional aspect of the function.

Stubs of stl Functions

All functions of the stl are stubs by PolySpace. Using the no-stl-stubs
option allows deactivating standard stl stubs (not recommended for further
possible scaling trouble).

Note All allocation functions found in the code to analyze like new, new|],
delete and delete[] are replaced by internal and optimized stubs of new and
delete. A warning is given in the log file when such replace occurs.

Stubs of libc Functions

Concerning the libe, all these functions are declared in the standard list of
headers and can be redefined using its own definition by invalidating the
associated set of functions:

e Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h (setjmp’ and ’longjmp’ functions are partially implemented
— see <polyspaceProduct>/cinclude/__polyspace_ _stdstubs.c),
signal.h (signal’ and ’raise’ functions are partially implemented — see
<polyspaceProduct>/cinclude/__polyspace__stdstubs.c), stdio.h,
stdarg.h, stdlib.h, string.h, and time.h.

6-19

6 Preparing Source Code for Verification

6-20

e Using D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions only
declared in strings.h, unistd.h, and fentl.h.

Most of the time these functions can be redefined and analyzed by PolySpace
by invalidating the associated set of functions or only the specific function
using D _ polyspace no_<function name>. For example, If you want to
redefine the fabs() function, you need to add the D _ polyspace_no_fabs
directive and add the code of your own fabs() function in a PolySpace
verification.

There are five exceptions to these rules The following functions which deal
with memory allocation can not be redefined: malloc(), calloc(), realloc(),
valloc(), alloca(), _ built_in_malloc() and __built_in_alloca().

Types Promotion

Types Promotion

In this section...

“Unsigned Types Promoted to Signed” on page 6-21

“Promotion Rules in Operators” on page 6-22

Unsigned Types Promoted to Signed

It is important to understand the circumstances under which signed integers
are promoted to unsigned.

For example, the execution of the following piece of code would produce an
assertion failure and a core dump.

#include <assert.h>
int main(void) {
int x = -2;
unsigned int y = 5;
assert(x <=y);

}

Consider the range of possible values (interval) of x in this second example.
Again, this code would cause assertion failure:

volatile int random;
unsigned int y = 7;

int x = random;
assert (x >= -7 && X <=y);

However, given that the interval range of x after the second assertion is not [
-7 .. 7], but rather [0 .. 7], the following assertion would hold true.

assert (x>=0 && x<=7);
Implicit promotion explains this behavior.

In fact, in the second example x <= y is implicitly:

((unsigned int) x) <=y /* implicit promotion because y is unsigned */

6-21

6 Preparing Source Code for Verification

6-22

A negative cast into unsigned gives a big value, which has to be bigger that 7.
And this big value can never be <=7, and so the assertion can never hold true.

Promotion Rules in Operators

Knowledge of the rules applying to the standard operators of the C language
will help you to analyze those orange and red checks which relate to overflows
on type operations. Those rules are:

e Unary operators operate on the type of the operand,;
e Shifts operate on the type of the left operand,;
® Boolean operators operate on Booleans;

® Other binary operators operate on a common type. If the types of the 2
operands are different, they are promoted to the first common type which
can represent both of them.

So, be careful of constant types, and also when analyzing any operation
between variables of different types without an explicit cast.

Consider the integral promotion aspect of the ANSI standard. On arithmetic
operators like +, -, ¥, %and / , an integral promotion is applied on both
operands. From the PolySpace point of view, that can imply an OVFL or a
UNFL orange check.

Example

extern char random_char(void);
extern int random_int(void);

void main(void)

{

char c1 = random_char();
char c2 random_char ()
9 int i1 = random_int();
10 int i2 = random_int();
11

12 it i1 + i2; // A typical OVFL/UNFL on a + operator

13 c1 cl + c2; // An OVFL/UNFL warning on the c1 assignment
[from int32 to int8]

O NOO O~ WD

bl

Types Promotion

14 }

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

extern char random_char(void);

void main(void)

2

3

4

5 {

6 char ci
7

8

9

random_char();
random_char();

char c2

¢l = (char)((int)c1 + (int)c2); // Warning OVFL: due to
integral promotion
10 }

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

In general, integral promotion requires that the abstract machine should
promote the type of each variable to the integral target size before realizing
the arithmetic operation and subsequently adjusting the assignment type.
See the equivalence example of a simple addition of two char (above).

Integral promotion respects the size hierarchy of basic types:

® char (signed or not) and signed short are promoted to int.

® unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (perhaps because of a
16-bit target, for example) then unsigned short is promoted to unsigned int.

o Other types like (un)signed int, (un)signed long int and (un)signed long
long int promote themselves.

6-23

6 Preparing Source Code for Verification

6-24

Running a Verification

® “Types of Verification” on page 7-2
¢ “Running Verifications on PolySpace Server” on page 7-3
¢ “Running Verifications on PolySpace Client” on page 7-22

¢ “Running Verifications from Command Line” on page 7-27

7 Running a Verification

7-2

Types of Verification

You can run a verification on a server or a client.

Use...

For...

Server

¢ Best performance
e Large files (more than 800 lines of code including comments)

e Multitasking

Client

® An alternative to the server when the server is busy

® Small files with no multitasking

Note Verification on a client takes more time. You might
not be able to use your client computer when a verification is
running on it.

Running Verifications on PolySpace® Server

Running Verifications on PolySpace Server

In this section...

“Starting Server Verification” on page 7-3
“What Happens When You Run Verification” on page 7-4
“Running Verification Unit-by-Unit” on page 7-5

“Managing Verification Jobs Using the PolySpace Queue Manager” on
page 7-7

“Monitoring Progress of Server Verification” on page 7-8

“Viewing Verification Log File on Server” on page 7-11

“Stopping Server Verification Before It Completes” on page 7-13
“Removing Verification Jobs from Server Before They Run” on page 7-14
“Changing Order of Verification Jobs in Server Queue” on page 7-15
“Purging Server Queue” on page 7-16

“Changing Queue Manager Password” on page 7-17

“Sharing Server Verifications Between Users” on page 7-18

Starting Server Verification

Most verification jobs run on the PolySpace server. Running verifications on a
server provides optimal performance.

To start a verification that runs on a server:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 4, “Setting Up a Verification Project”.

3 Select the Send to PolySpace Server check box next to the Start button
in the middle of the Launcher window.

Send to PolySpace Server v B Start |

7 Running a Verification

7-4

Note If you select Set this option to use the server mode by default
in every new project in the Remote Launcher pane of the preferences,
the Send to PolySpace Server check box is selected by default when you
create a new project.

4 (Click Start.

The verification starts. For information on the verification process, see
“What Happens When You Run Verification” on page 7-4.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 8-2.

5 When you see the message Verification process completed, click OK
to close the message dialog box.

6 For information on downloading and viewing your results, see “Opening
Verification Results” on page 9-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C++ compiler, it ensures that
your code is portable, maintainable, and complies with ANSI® standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see
“Generate a Main Using a Given Class” in the PolySpace Products for
C++ Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

The compile phase of the verification runs on the client. When the compile
phase completes:

Running Verifications on PolySpace® Server

* A message dialog box tells you that the verification completed. This
message means that the part of the verification that takes place on the
client is complete. The rest of the verification runs on the server.

* A message in the log area tells you that the verification was transferred to
the server and gives you the identification number (Analysis ID) for the
verification. For the following verification, the identification number is 1.

send to PolySpace Server [v ¥ Start |

Compile : 100%% | Mormalization : 0% C++Link : 0% Intermediate : 0% | Leveld : 0% |
00:00:05 00:00:00 000000 000000 000000
= Campile Search: 44 I (43
_@ Stats Status Description File Line | Caol
@ Full Log 1 [|PolySpace Launcher for CPP verification start at Jul 7, 2009...

The analysis has been queued with ID=1

Running Verification Unit-by-Unit
When launching a server verification, you can create a separate verification
jobs for each source file in the project. Each file is compiled, sent to the

PolySpace Server, and verified individually. Verification results can then be
viewed for the entire project, or for individual units.

To run a unit-by-unit verification:

1 In the Launcher, ensure that the Send to PolySpace Server check box
is selected.

Send to PolySpace Server v B Start |

2 In the Analysis options, expand PolySpace inner settings.

3 Select the Run a verification unit by unit check box.

7-5

7 Running a Verification

7-6

[=-PolySpace inner settings

E--Run a verification unit by unit ¥

-unit-by-unit

ie-Unit by unit common source C:\PolySpacecpp_| ...

-unit-by-unit-common-source

4 Expand the Run a verification unit by unit item.

5 Click the button I_I to the right of the Unit by unit common source

option.

The Unit by unit common source dialog box opens.

x|

~Unit by unit common source [-unit-by-unit-common-source]

Ok Cancel |

6 Click the folder icon E‘

The Select a file to include dialog box appears.

7 Select the common files to include with each unit verification.

These files are compiled once, and then linked to each unit before
verification. Functions not included in this list are stubbed.

8 Click Ok.

9 Click Start.

Running Verifications on PolySpace® Server

Each file in the project is compiled, sent to the PolySpace Server, and
verified individually as part of a verification group for the project.

Managing Verification Jobs Using the PolySpace
Queue Manager

You manage all server verifications using the PolySpace Queue Manager (also
called the PolySpace Spooler). The PolySpace Queue Manager allows you to
move jobs within the queue, remove jobs, monitor the progress of individual
verifications, and download results.

Note The PolySpace Queue Manager is not available on UNIX® or Linux
systems. To manage server verifications on UNIX or Linux systems, you must
use batch commands. For information on managing verification jobs from the
command line, see “Managing Verifications in Batch” on page 7-27.

To manage verification jobs on the PolySpace Server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Cperations Help

D | Authar
NOL_Marme

Applicatian R ezults directary CPU(Statuz | Date |Lars

Trainirg_Project C:\polyspace_projecthresults ange running 008, °

7 Running a Verification

2 Right-click any job in the queue to open the context menu for that
verification.

Follow Progress. ..

Wiew Log File, ..

Download Results., ..

Download Resulks And Remove From Quele. .,

Maove Down In Queue

Skop...
Stop And Download Resulks, .,
Stop And Remove From Queue. ..

Remove From Queue. ..

3 Select the appropriate option from the context menu.

Tip You can also open the Polyspace Queue Manager Interface by clicking

the PolySpace Queue Manager icon E in the PolySpace Launcher toolbar.

Monitoring Progress of Server Verification

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Running Verifications on PolySpace® Server

i PolySpace Queue Manager Interface

Cperations Help
D | Author Application Rezultz directory CPU| Status | Date |Lan

pour_riame Training_Project C:\polyspace_projecth, anze running 008,

2 Right-click the job you want to monitor, and select Follow Progress from

the context menu.

Note This option does not apply to unit-by-unit verification groups, only

the individual jobs within a group.

A Launcher window labeled PolySpace follow remote analysis

progress for C appears.

7-9

7 Running a Verification

7-10

H PolySpace follow remote code verification progress - | Ellil

File Edit Help

Cornpile ; 100%

00.00:04

Kl

Send to PolySpace Setver [| & Stop Execution |

C+ L

000025

| Inte :
00:00:15

@ Compile

mber
ﬁstats unher
& FulLog [mber

Ha| ;I

Certain (Fed) errors summary:
- certain 0BAI, array index within bounds: [0..3], File wmain.cpp, line 61, column 9

GUI files generation complete.

Generating results in a spreadsheet format in C:%Poly3pace'Poly3pace RlDatas‘analysis2hyPolyipace-Doc
Generation cowplete

Eaa o o o o o o o o o o o o o o oo o o o o o o o o o o o

T

F*%* Software Safety Integration Analysis Lewel 4 done

o

=

—
-
| »

irification completed

You can monitor the progress of the verification by watching the progress
bar and viewing the logs at the bottom of the window. The word
processing appears under the current phase. The progress bar highlights
each completed phase and displays the amount of time for that phase.

The logs report additional information about the progress of the
verification. The information appears in the log display area at the bottom
of the window. The full log displays by default. It display messages, errors,
and statistics for all phases of the verification. You can search the full log
by entering a search term in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward.

Click the Compile Log button to display compile phase messages and
errors. You can search the log by entering search terms in the Search in

Running Verifications on PolySpace® Server

the log box and clicking the left arrows to search backward or the right
arrows to search forward. Click on any message in the log to get details
about the message.

4 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.
. Go | .
5 Click the refresh button to update the stats log display as the

verification progresses.

6 Select File > Quit to close the progress window.

When the verification completes, the status in the PolySpace Queue
Manager Interface changes from running to completed.

i PolySpace Queue Manager Interface
Operations Help
D | Author Application Rezultz directory CPU| Status [Date (L

vour_name Training_Project C:\polyzpace_projecthesults anze xompletec (008, °

Viewing Verification Log File on Server

You can view the log file of a server verification using the PolySpace Queue
Manager.

To view a log file on the server:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

7-11

7 Running a Verification

ﬂ PolySpace Queue Manager Interface

Cperations Help

D | Author Application Rezultz directory CPU| Status | Date |Lan

pour_riame Training_Project C:\polyspace_projectresults anze running 008,

2 Right-click the job you want to monitor, and select View log file.

A window opens displaying the last one-hundred lines of the verification.
\Polyspace'PolySpace_Common',Remotel auncher', whin',ps

GUI files generation complete.

Generating remote file
Done

Certain (red? errors have been detected in the analysed code duy
SE .

Analysis continuwing because the option —continue—with-red-error

3030 -J0f-Jof 30303030 3o 3030 303030303030 3030 -Jof-JE-Juf-Juf-Juf-Jf-Jf-Jf-uf-Jof-Jof-Jof-Jof-Jof-Jof-Jof-Jof—3af—af—3af—3af—3af—af—3ef—aF-eF-eE-JeE-Jef-Jef-Jof-Jof-Jef-Jef-Jef-Jef-Jef-Ief-E

CalaZad

#3#% Level 4 Software Safety Analysis done
CaXaXad

3oE-30E 30 ~JuE—Jf—JaE—JaE—eE e 3o 3o -JaF-JE-JaE-JaE e e eE 3o -Jef-JnE-JuE-Juf-Jef—Jef-ef—uf—Juf-Jaf-JeE-JeE-Jef-ef—Jef—Juf—Juf-Jaf—JaE e e oo -Jef-JE-JaE-JaE-JeE e -JeE—ef-Jef-Jf-Jnf-Jnf-Jef-Jef-ef-ef-
Ending at: Apr 11, 26088 12:29:8

Uzer time for pass4d: 35.8real. 35.8u + Bs

Uzer time for polyspace—c: 176.5real. 176.5u + A=

EaXaxad

#*x% End of PolySpace Uerifier analysis
CaTakal

Presz enter to close the window ...

3 Press Enter to close the window.

7-12

Running Verifications on PolySpace® Server

Stopping Server Verification Before It Completes

You can stop a verification running on the server before it completes using
the PolySpace Queue Manager. If you stop the verification, results will be
incomplete, and if you start another verification, the verification starts over

from

the beginning.

To stop a server verification:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i Polyspace Queue Manager Interface

Cperations Help

D | Authar
BOL_Narne

Application

Training_Project C:\polpspace_projecthresulls anse running 003,

Fezultz directory CPU| Status | Date |Lan

2 Right-click the job you want to monitor, and select one of the following
options:

Stop — Stops a unit-by-unit verification job without removing it. The
status of the job changes from “running” to “aborted”. All jobs in the
unit-by-unit verification group remain in the queue, and other jobs in
the group will continue to run.

Stop and download results — Stops the verification job immediately
and downloads any preliminary results. The status of the verification
changes from “running” to “aborted”. The verification remains in the
queue.

7-13

7 Running a Verification

* Stop and remove from queue — Stops the verification immediately
and removes it from the queue. If the job is part of a unit-by-unit
verification group, the entire verification is removed, not just the
individual job.

Removing Verification Jobs from Server Before They
Run

If your job is in the server queue, but has not yet started running, you can
remove it from the queue using the PolySpace Queue Manager.

Note If the job has started running, you must stop the verification before you
can remove the job (see “Stopping Server Verification Before It Completes”
on page 7-13). Once you have aborted a verification, you can remove it from
the queue.

To remove a job from the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Cperations Help

D | Authar Applicatian R ezults directary CPU(Statuz | Date |Lars
wowr_name Training_Project C:\polyspace_projectsresults ange running 008, °

2 Right-click the job you want to remove, and select Remove from queue.

7-14

Running Verifications on PolySpace® Server

The job is removed from the queue.

Changing Order of Verification Jobs in Server Queue

You can change the priority of verification jobs in the server queue to
determine the order in which the jobs run.

To move a job within the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

i PolySpace Queue Manager Interface

Operations Help
D | Author Application A ezults directory CPU| Statuz | Date |Lar
powr_name Training _Project C:Apolyspace_projecthresults ange runnhing 008, "

2 Right-click the job you want to remove, and select Move down in queue.
The job is moved down in the queue.

3 Repeat this process to reorder the jobs as necessary.

Note You can move unit-by-unit verification groups in the queue, as well as
individual jobs within a single unit-by-unit verification group. However, you
can not move individual unit-by-unit verification jobs outside of the group.

7-15

7 Running a Verification

Purging Server Queue

You can purge the server queue of all jobs, or completed and aborted jobs
using the using the PolySpace Queue Manager.

Note You must have the queue manager password to purge the server queue.

To purge the server queue:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

E PolySpace Queue Manager Interface

Cperations Help

D | Authar Applicatian R ezults directary CPU(Statuz | Date |Lars
wowr_name Training_Project C:\polyspace_projectsresults ange running 008, °

2 Select Operations > Purge queue. The Purge queue dialog box opens.

7-16

Running Verifications on PolySpace® Server

x

Pleaze zelect the action pou want to perform and type the administrator pazsword ;

Action Purge completed and aborted analysis j

Purge the entire queaue
Pazsword : Furge completed and aborted analpziz

3 Select one of the following options:
¢ Purge the entire queue — Removes all jobs from the server queue.

®* Purge completed and aborted analysis — Removes all completed
and aborted jobs from the server queue.

Note For unit-by-unit verification jobs, no jobs are removed until the
entire group has been verified.

4 Enter the Queue Manager Password.
5 Click OK.
The server queue is purged.

Changing Queue Manager Password

The Queue Manager has an administrator password to control access to
advanced operations such as purging the server queue. You can set this
password through the Queue Manager.

Note The default password is administrator.

To set the Queue Manager password:

1 Double-click the PolySpace Spooler icon:

7-17

7 Running a Verification

7-18

The PolySpace Queue Manager Interface opens.

2 Select Operations > Change Administrator Password.
The Change Administrator Password dialog box opens.

3 Enter your old and new passwords, then click OK.

The password is changed.

Sharing Server Verifications Between Users

Security of Jobs in Server Queue

For security reasons, all verification jobs in the server queue are owned by the
user who sent the verification from a specific account. Each verification has a
unique encryption key, that is stored in a text file on the client system.

When you manage jobs in the server queue (download, kill, remove, etc.), the
Queue Manager checks the public keys stored in this file to authenticate

that the job belongs to you.

If the key does not exist, an error message appears: “key for verification
<ID> not found”.

analysis-keys.txt File

The public part of the security key is stored in a file named analysis-keys.txt
associated to a user account. This file is located in:

e UNIX — /home/<username>/.PolySpace

e Windows® — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of this ASCII file is as follows (tab-separated):

<id of launching> <server name of IP address> <public key>
where <public key> is a value in the range [0..F]

The fields in the file are tab-separated.

Running Verifications on PolySpace® Server

The file cannot contain blank lines.

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCES576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

Sharing Verifications Between Accounts
To share a server verification with another user, you must provide the public
key.

To share a verification with another user:

1 Find the line in your analysis-keys. txt file containing the <ID> for the
job you want to share.

2 Add this line to the analysis-keys.txt file of the person who wants
to share the file.

The second user can then download or manage the verification.

Magic Key to Share Verifications

A magic key allows you to share verifications without copying individual
keys. This allows you to use the same key for all verifications launched from
a single user account.

The format for a magic key is as follows:

0 <Server id> <your hexadecimal value>

When you add this key to your verification-key.txt file, all verification
jobs you submit to the server queue use this key instead of a random one.
All users who have this key in their verification-key.txt file can then
download or manage your verification jobs.

7-19

7 Running a Verification

Note This only works for verification jobs launched after you place the magic
key in the file. If the verification was launched before the key was added, the
normal key associated to the ID is used.

If analysis-keys.txt File is Lost or Corrupted

If your analysis-keys. txt file is corrupted or lost (removed by mistake) you
cannot download your verification results. To access your verification results
you must use administrator mode.

Note You must have the queue manager password to use Administrator
Mode.

To use administrator mode:

1 Double-click the PolySpace Spooler icon:

The PolySpace Queue Manager Interface opens.

Cperations Help

E PolySpace Queue Manager Interface

D | Authar
NOL_Marme

Applicatian R ezults directary CPU(Statuz | Date |Lars

Trainirg_Project C:\polyspace_projecthresults ange running 008, °

7-20

2 Select Operations > Enter Administrator Mode.

Running Verifications on PolySpace® Server

3 Enter the Queue Manager Password.
4 Click OK.

You can now manage all verification jobs in the server queue, including
downloading results.

7-21

7 Running a Verification

Running Verifications on PolySpace Client

In this section...

“Starting Verification on Client” on page 7-22

“What Happens When You Run Verification” on page 7-23
“Monitoring the Progress of the Verification” on page 7-24
“Stopping Client Verification Before It Completes” on page 7-25

Starting Verification on Client

For the best performance, run verifications on a server. If the server is busy
or you want to verify a small file, you can run a verification on a client.

Note Because a verification on a client can process only a limited number
of variable assignments and function calls, the source code should have no
more than 800 lines of code.

If you launch a verification on C++ code containing more than 3,000
assignments and calls, the verification will stop and you will receive an error
message.

To start a verification that runs on a client:

1 Open the Launcher.

2 Open the project containing the files you want to verify. For more
information, see Chapter 4, “Setting Up a Verification Project”.

3 Ensure that the Send to PolySpace Server check box is not selected.

4 If you see a warning that multitasking is not available when you run
a verification on the client, click OK to continue and close the message
box. This warning only appears when you clear the Send to PolySpace
Server check box.

7-22

Running Verifications on PolySpace® Client

5 Click the Start button. ﬂl

6 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

The progress bar and logs area of the Launcher window become active.

Note If you see the message Verification process failed, click OK
and go to “Verification Process Failed Errors” on page 8-2.

7 When the verification completes, a message dialog box appears telling you
that the verification is complete and asking if you want to open the Viewer.

E x|
@ werification process completed.
Do ywou wank ko launch PolySpace Viewer ¢
Ok |

8 Click OK to open your results in the Viewer.

For information on viewing your results, see “Opening Verification Results”
on page 9-8.

What Happens When You Run Verification

The verification has three main phases:

1 Checking syntax and semantics (the compile phase). Because PolySpace
software is independent of any particular C++ compiler, it ensures that
your code is portable, maintainable, and complies with ANSI standards.

2 Generating a main if it does not find a main and the Generate a Main
option is selected. For more information about generating a main, see

7-23

7 Running a Verification

7-24

“Generate a Main Using a Given Class” in the PolySpace Products for
C++ Reference.

3 Analyzing the code for run-time errors and generating color-coded
diagnostics.

Monitoring the Progress of the Verification

You can monitor the progress of the verification by watching the progress bar
and viewing the logs at the bottom of the Launcher window.

Cotmpile © 100% IErmalizatiDn: 15% | C++ Link ; 0% | Intermediste | 0% | Lewvell : 0% |
0o 0o; 02 00: 00: 08 0 Q; 0y 00: 00: 00 0 Q; 0y
C':'mpile Search 44 | (13

Stats | status| Description | File | une | ca

@ Full Log 1 |P'|:|Iy5pa|:e Launcher for CPP ver...| | |

The progress bar highlights the current phase in blue and displays the
amount of time and completion percentage for that phase.

The logs report additional information about the progress of the verification.
To view a log, click the button for that log. The information appears in the log
display area at the bottom of the Launcher window.

To view the logs:

1 The compile log is displayed by default.

This log displays compile phase messages and errors. You can search the
log by entering search terms in the Search in the log box and clicking the
left arrows to search backward or the right arrows to search forward. Click
on any message in the log to get details about the message.

2 Click the Stats button to display statistics, such as analysis options,
stubbed functions, and the verification checks performed.

Running Verifications on PolySpace® Client

o
3 Click the refresh button LI to update the stats log display as the
verification progresses.

4 Click the Full Log button to display messages, errors, and statistics for all
phases of the verification.

You can search the full log by entering a search term in the Search in
the log box and clicking the left arrows to search backward or the right
arrows to search forward.

Stopping Client Verification Before It Completes

You can stop the verification before it completes. If you stop the verification,
results will be incomplete, and if you start another verification, the
verification starts over from the beginning.

To stop a verification:

1 Click the Stop Execution button.

@ Stop Execution |

A warning dialog box appears.

waming x|

@ Do wou really want to stop the current execution ?

o |

2 Click Yes.

The verification stops and the message Verification process stopped
appears.

3 Click OK to close the Message dialog box.

7-25

7 Running a Verification

Note Closing the Launcher window does not stop the verification. To resume
display of the verification progress, open the Launcher window and open the
project that you were verifying when you closed the Launcher window.

7-26

Running Verifications from Command Line

Running Verifications from Command Line

In this section...

“Launching Verifications in Batch” on page 7-27

“Managing Verifications in Batch” on page 7-27

Launching Verifications in Batch

A set of commands allow you to launch a verification in batch.
All these commands begin with the following prefixes:

® Server verification —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-cpp

¢ (Client verification —polyspace-remote-desktop-cpp

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-cpp -server
[<hostname>:[<port>] | auto] allows you to send a C++ client
verification remotely.

Note If your PolySpace server is running on Windows, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-cpp.exe

Managing Verifications in Batch

In batch, a set of commands allow you to manage verification jobs in the
server queue.

On UNIX platforms, all these command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-.

7-27

7 Running a Verification

On Windows platforms, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

® psqueue-download <id> <results dir> — download an identified
verification into a results directory. When downloading a unit-by-unit
verification group, all the unit results are downloaded and a summary of
the download status for each unit is displayed.

= [-f] force download (without interactivity)

= -admin -p <password> allows administrator to download results.
= [-server <name>[:port]] selects a specific Queue Manager.

= [-v]|version] gives release number.

® psqueue-kill <id> — kill an identified verification. For unit-by-unit
verification groups, you can stop the entire group, or individual jobs within
the group. Stopping an individual job does not kill the entire group.

® psqueue-purge all|ended — remove all completed verifications from
the queue. For unit-by-unit verification jobs, no jobs are removed until
the entire group has been verified.

® psqueue-dump — gives the list of all verifications in the queue associated
with the default Queue Manager. Unit-by-unit verification groups are
shown using a tree structure.

® psqueue-move-down <id>— move down an identified verification in the
Queue. Individual jobs can be moved within a unit-by-unit verification
group, but not outside of the group.

® psqueue-remove <id> — remove an identified verification in the queue.
You cannot remove a single job that is part of a unit-by-unit verification
group, you can only remove the entire group.

® psqueue-get-gm-server — give the name of the default Queue Manager.

® psqueue-progress <id>: give progression of the currently identified
and running verification. This command does not apply to unit-by-unit
verification groups, only the individual jobs within a group.

= [-open-launcher] display the log in the graphical user interface of
launcher.

= [-full] give full log file.

7-28

Running Verifications from Command Line

= psqueue-set-password <password> <new password> — change
administrator password.

® psqueue-check-config — check the configuration of Queue Manager.
= [-check-licenses] check for licenses only.

® psqueue-upgrade — Allow to upgrade a client side (see the PolySpace
Installation Guide in the <PolySpace Common Dir>/Docs directory).

= [-list-versions] give the list of available release to upgrade.

= [-install-version <version number> [-install-dir
<directory>1] [-silent] allow to install an upgrade in a given
directory and in silent.

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

7-29

7 Running a Verification

7-30

Troubleshooting
Verification Problems

e “Verification Process Failed Errors” on page 8-2

® “Compile Errors” on page 8-6

e “Dialect Issues” on page 8-12

® “Link Messages” on page 8-21

® “Troubleshooting Using the Preprocessed .ci Files” on page 8-25
¢ “Reducing Verification Time” on page 8-30

¢ “Obtaining Configuration Information” on page 8-49

* “Removing Preliminary Results Files” on page 8-51

8 Troubleshooting Verification Problems

Verification Process Failed Errors

In this section...

“Overview” on page 8-2

“Hardware Does Not Meet Requirements” on page 8-2

“You Did Not Specify the Location of Included Files” on page 8-2
“PolySpace Software Cannot Find the Server” on page 8-3

“Limit on Assignments and Function Calls” on page 8-4

Overview

If you see a message that saying Verification process failed, it indicates
that PolySpace software could not perform the verification. The following
sections present some possible reasons for a failed verification.

Hardware Does Not Meet Requirements

The verification fails if your computer does not have the minimal hardware
requirements. For information about the hardware requirements, see

www.mathworks.com/products/polyspaceclientc/requirements.html.

To determine if this is the cause of the failed verification, search the log for
the message:

Errors found when verifying host configuration.
You can:

e Upgrade your computer to meet the minimal requirements.

¢ Select the Continue with current configuration option in the General
section of the Analysis options and run the verification again.

You Did Not Specify the Location of Included Files

If you see a message in the log, such as the following, either the files are
missing or you did not specify the location of included files.

http://www.mathworks.com/products/polyspaceclientc/requirements.html

Verification Process Failed Errors

include.h: No such file or directory

For information on how to specify the location of include files, see “Creating
New Projects” on page 4-7.

PolySpace Software Cannot Find the Server

If you see the following message in the log, PolySpace software cannot find
the server.

Error: Unknown host

PolySpace software uses information in the preferences to locate the server.
To find the server information in the preferences:

1 Select Edit > Preferences.

2 Select the Remote Launcher tab.

8 Troubleshooting Verification Problems

8-4

x

Tools henu Remote Launcher | Miscellaneuusl Feszult direu:tu:ur':.fl Default directory | Generic targets I
Remate configuration
v Set this option to uze the server mode by default in every hevy project

Mate: this option iz mandatory when the project containg multitasking options.

The multitazking options will be ighared athetwize.

0 Automatically detect the remate server

' Use the folloving setver and port

The setver name "localhost" can be uzed if the server iz the local machine.

0]34 Apigaly Cancel

By default, PolySpace software automatically finds the server. You can
specify the server by selecting Use the following server and port and
providing the server name and port. For information about setting up a
server, see the PolySpace Installation Guide.

Limit on Assignments and Function Calls

If you launch a client verification on a large file, the verification may stop and
you may receive an error message saying the number of assignments and
function calls is too big. For example:

kkhkkhkkhkhkhkhkhkhkkhkhkhhhhkhkhkkhkhdhhhhkhhkhkhkhhhhhkhkhkhddhhkhkhhkkhkkhkhkhhkhhkkxdkrkdkx%x%

Beginning C to intermediate language translation
kkhkkhkkhkhkhkhkhkhkkhkhkhhhhkhhkhkhkhhhhhhkhkhkkhkhhhhhhkhhdhhhhhhhkkhkhkhhkhkhkdhdkdkxx%x

C to intermediate language translation 1 (P_SP)

*** | icense error: number of assignments and function calls is

Verification Process Failed Errors

too big for -unit mode (5534 v.s 2000).
*** Aborting.

PolySpace Client for C/C++ software can only verify C++ code with up to
3,000 assignments and calls.

To verify code containing more than 3,000 assignments and calls, launch your
verification on the PolySpace Server for C/C++.

8-5

8 Troubleshooting Verification Problems

8-6

Compile Errors

In this section...

“Overview” on page 8-6
“Examining the Compile Log” on page 8-6
“Includes” on page 8-8

“Specific Keyword or Extended Keyword” on page 8-8

“Initialization of Global Variables” on page 8-10

Overview

PolySpace software may be used instead of your chosen compiler to make
syntactical, semantic and other static checks. These errors will be detected
during the standard compliance checking stage, which takes about the same
amount of time to run as a compiler. The use of PolySpace software this early
in development yields a number of benefits:

¢ detection of link errors, plus errors which are only apparent with reference
to two or more files;

® objective, automatic and early control of development work (perhaps to
avoid errors prior to checking code into a configuration management
system).

Examining the Compile Log
The compile log displays compile phase messages and errors. You can search

the log by entering search terms in the Search in the log box and clicking
the left arrows to search backward or the right arrows to search forward.
To examine errors in the Compile log:

1 Click the Compile button in the log area of the Launcher window.

A list of compile phase messages appear in the log part of the window.

Compile Errors

Cnmpile Search: 44 | (43

Stats |5 | Description | File | |co
@ Full Log l PaolySpace Launcher for C werification start at Jan 13, 200,
global declaration of 'cos' function has incormpatible type v |[mathl o

procedure main multiply defined previously defined at math. .. |math2.c
Werifier haz detected cross-files error(s) in the code.

[43]

[2%]

2 Click on any of the messages to see message details, as well as the full
path of the file containing the error.

Search: 44 I 43

Dietail
.o | Description Fie |Li.|cal
i |PolySpace Launcher for C verification start st Jan 13, 200, | . i .
global declarstion of 'cos' function has incompatible type w... mathl 5 File C:hPolydpaceipolyspace prajectisourcesinathi.c line 2

i

T |verifier has detected cross-files error(s) in the code. Error:

procedure main multiply defined
previously defined at mathl.c:Z

3 To open the source file referenced by any message, right click the row for
the message, then select Open Source File.

5. | Diescription File |Li.|col
I, PolySpace Launcher for C werification start &t Jan 13, 200,
global declaration of 'cos' function has incompatible type w. ..
dure main multiply firvec] por gt =
¥ |Werifier has detected cross-files e %= Open Source File
s Configure Editar |

mathl .z o

The file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 4-15.

4 Correct the error and run the verification again.

8 Troubleshooting Verification Problems

Includes

As for the C language, access to the standard header files must be provided
when the applications use the standard library.

The original code uses standard header files, but a message can appear:
Error message:
file.cpp", line 1: catastrophic error: could not open source file "iostream.h"

file.cpp:
1 #include "iostream.h"

Use the -I option to include the correct header files, including the header
files of the compiler.

Specific Keyword or Extended Keyword
e “Specific Keyword” on page 8-8

e “Non ANSI Keywords” on page 8-9

Specific Keyword
Compilers of specific application are defined theirs owned keyword. A classic
example is the compiler for micro controller as IAR or Keil compiler.

Original code:

keyword.h keyword.cpp
class keyword #include "keyword.h"
{
public: keyword: :keyword(int val)
int far m_val; {
keyword (int val); m_val = 0;
s if (val > 10)
m_val = -1;
I3

Compile Errors

Error message:

Verifying keyword.cpp
"../sources/keyword.h", line 7: error: expected a ";"
int far m_val;

~

"../sources/keyword.cpp", line 6: error: identifier "m_val" is undefined
m_val = 0;

A~

2 errors detected in the compilation of "CPP-ALL/SRC/MACROS/keyword.cpp".

You need to use the option -D to avoid taking these keywords into account:
-D far=

Non ANSI Keywords

You might have the same error message as for a regular compilation error,
as discussed previously when using some non ANSI keyword containing
for example @ as first character. But in this case, the problem cannot be
addressed by means of a compilation flag, nor a -include file. In this case,
you need to use the post-preprocessing command.

1 Create a file called ABC.txt, and save it under c:\PolySpace
2 Open it with an ASCII editor, and copy and paste the following text:

#!/bin/sh
sed "s/titi/toto/g" |
sed "s/@interrupt//g"

3 In the launcher, specify the absolute path and file name in the

-post-preprocessing-command field using browse button on a Windows
system.

8-9

8 Troubleshooting Verification Problems

8-10

Note Under Linux, you must:
® enter the full path, such as /home/poly/working_dir/ABC.txt, and

®* make sure this file has execution permissions by typing: chmod 755
ABC. txt.

4 Launch a verification on the example “my_file.cpp” below, and confirm
that the compilation phase generates no errors.

void main(void)

{

@interrupt // will be removed by the command
int titi; // will be replaced by int toto
int r=0; r++; toto++;

}

5 To confirm that the right transformation has been performed, open
the expanded file my file.ci which is located in the directory
<results_folder>/CPP-ALL/my_file.ci

Initialization of Global Variables

When a data member of a class is declared static in the class definition,
then it is a static member of the class. Static data members are initialized
and destroyed outside the class, as they exist even when no instance of the
class has been created.

class Test

{
public:

static int m_number = 0;

};
Error message:
Verifying test_ko.cpp

/sources/test_ko.cpp, line 4: error: a member with an in-class
initializer must be const

Compile Errors

| static int m_number = 0;

| A
1 error detected in the compilation of "test_ko.cpp".

Corrected code:

in file Test.h in file Test.cpp

class Test int Test::m_number = 0;
{

public:

static int m_number;

s

Note Some dialects, other than those supported by PolySpace Client for
C/C++, accept the default initialization of static data member during the
declaration.

8-11

8 Troubleshooting Verification Problems

Dialect Issues

In this section...

“ISO versus Default Dialects” on page 8-12
“CFront2 and CFront3 Dialects” on page 8-14
“Visual Dialects” on page 8-15

“GNU Dialect” on page 8-17

ISO versus Default Dialects

The 5 common permissiveness options used by PolySpace software are
described in this paragraph when using -dialect iso:

Original code (file permissive.cpp):

class B {} ;

class A

{

friend B ;

enum e ;

void f() { long float ff = 0.0 ;}
enum e { OK = 0, KO } ;
b

template <class T>
struct traits

{

typedef T * pointer ;
typedef T * pointer ;
}os

template<class T>
struct C

{

typedef traits<T>::pointer pointer ;
}os

int main()

{

C<int> ¢ ;

}

8-12

Dialect Issues

Using dialect 1so, should be: friend class B;

"./sources/permissive.cpp", line 5: error: omission of "class"
is nonstandard
friend B ;

Using dialect iso, the line 6 must be removed

"./sources /permissive.cpp", line 6: error: forward declaration
of enum type
is nonstandard

enum e ;

S

Using dialect 1so, line 7 should be: double ff = 0.0;

"./sources/permissive.cpp", line 7: error: invalid combination
of type
specifiers

long float ff = 0.0 ;

Using dialect iso, line 14 needs to be removed

"./sources/permissive.cpp", line 14: error: class member typedef
may not be
redeclared

typedef T * pointer ; // duplicate !

Using dialect iso, line 21 needs to be changed by: typedef typename
traits<T>::pointer pointer

"./sources/permissive.cpp", line 21: error: nontype

"traits<T>::pointer [with T=T]" is not a type name
typedef traits<T>::pointer pointer ;

All these error messages will disappear if the —dialect default option 1s
activated.

8-13

8 Troubleshooting Verification Problems

8-14

CFront2 and CFront3 Dialects

As mentioned at the beginning of this section, cfront2 and cfront3 dialects
were already being used before the publication of the ANSI C++ standard in
1998. Nowadays, these two dialects are used to compile legacy C++ code.

If the cfront2 or cfront3 options are not selected, you may get the common
error messages below.

Variable Scope Issues

The ANSI C++ standard specifies that the scope of the declarations occurring
inside loop definition is local to the loop. However some compilers may
assume that the scope is local to the bloc ({ }) which contains the loop.

Original code:

for (int i = 0; i < maxval; i++) {...}
if (i == maxval) {

}

Error message:

Verifying Test.cpp
"../sources/Test.cpp", line 26: error: identifier "i" is undefined
if (i == maxval) {

S

Note This kind of construction has been allowed by compilers until 1999,
before the Standard became more strict.

“bool” Issues
Standard type may need to be turned into boolean type

Original code:

enum bool

{

Dialect Issues

FALSE=0,
TRUE
b
class CBool
{
public:
CBool ();
CBool (bool val);
bool m_val;
b

Error message:

Verifying C++ sources

Verifying CBool.cpp

"../sources/CBool.h", line 4: error: expected either a definition
or a tag name

enum bool

S

Visual Dialects

The following messages will appear if the compiler is based on a Visual®
dialect (including visuals8).

Import Directory

When a Visual application uses #import directives, the Visual C++ compiler
generates a header file which contains some definitions. These header files
have a .tlh extension and PolySpace for C/C++ requires the directory
containing those files.

Original code:

#include "stdafx.h"

#include <comdef.h>

#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML: : DOMDocument* doc ;

int _tmain(int argc, _TCHAR* argv[])
{

8-15

8 Troubleshooting Verification Problems

return 0;

}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file "./MsXml.tlh"
#import <MsXml.tlb>

S

The Visual C++ compiler generates these files in its “build-in” directory
(usually Debugor Release). Therefore, in order to provide those files, the
application needs to be built first. Then, the option -import-dir=<build
directory> must be set with a correct path folder.

pragma Pack
Using a different value with the compile flag #pragma pack) can lead to a
linking error message.

Original code:

test1.cpp type.h test2.cpp
#pragma pack(4) struct A #pragma pack(2)
{
#include "type.h" char ¢ ; #include "type.h"
int 1 ;
}os

Error message:

Pre-linking C++ sources ...
"../sources/type.h", line 2: error: declaration of class "A" had
a different meaning during compilation of "CPP-ALL/SRC/MACROS/test1.cpp"
(class types do not match)
struct A
detected during compilation of secondary translation unit
"CPP-ALL/SRC/MACROS/test2.cpp"

8-16

Dialect Issues

The option -ignore-pragma-pack is mandatory to continue the verification.

GNU Dialect

The GNU dialect is based on GCC 3.4. The GNU dialect supports the keyword
__asm__ __ volatile , which is used to support inline functions. For
example, the <sys/io.h> header includes many inline functions. The GNU
dialect supports these inline functions.

PolySpace software supports the following GNU elements:
e Variable length arrays
®* Anonymous structures:

void f(int n) { char tmp[n] ; /* ... */ }

union A {
struct {
double x ;
double y ;
double z ;

b
double tab[3];
}a;
void main(void) {
assert(&(a.tab[0]) == &(a.x)) ;
}

e All other syntactic constructions allowed by GCC, except as noted below

Partial Support

Zero length arrays have the same support as in Visual Mode. They are
allowed when used through a pointer, but not in a local variable.

8-17

8 Troubleshooting Verification Problems

Syntactic Support Only

PolySpace software provides syntactic support for the following options, but
not semantic support:

® attribute__ (...) is allowed but generally not taken into account.

® No special stubs are computed for predeclared functions such as
__builtin_cos, __builin_exit, and _ builtin_fprintf).

Not Supported

The following options are not supported:

® The keyword __ thread

® Statement expressions:

int 1 = ({ int tmp ; tmp = f() ; if (tmp >0) { tmp =0 ; } tmp ; })

Taking the address of a label:

{ L : void *a = &&L ; goto *a ; }

General C99 features supported by default in GCC, such as complex
built-in types (__complex_ , real |, etc.).

Extended designators initialization:

struct X { double a; int b[10] } x ={ .b = {1, [5] =2 },
.b[3] =1, .a = 42.0 };

Nested functions

Examples

Example 1: _asm_volatile_ keyword

In the following example, for the inb_p function to correctly manage the
return of the local variable v,the asm__ volatile keyword is used as
follows:

extern inline unsigned char
inb_p (unsigned short port)

8-18

Dialect Issues

{
unsigned char _v;
__asm__ __volatile__ ("inb %w1,%0\noutb %%al,$0x80":"=a"
(_v):"Nd" (port));
return _v;

Example 2: Anonymous Structure

The following example shows an unnamed structure supported by GNU:

class x

{
public:

struct {

unsigned int a;
unsigned int b;
unsigned int c;

};

unsigned short pcia;
enum{

ea = 0Ox1,

eb = 0x2,

ec = 0x3

};

struct {

unsigned int z1;
unsigned int z2;
unsigned int z3;
unsigned int z4;
b

b

int main(int argc, char *argv[])

{

class x myx;

8-19

8 Troubleshooting Verification Problems

myx.a = 10;
myx.z1 = 11;
return(0);

}

8-20

Link Messages

Link Messages

In this section...
“STL Library C++ Stubbing Errors” on page 8-21
“Lib C Stubbing Errors” on page 8-22

STL Library C++ Stubbing Errors

PolySpace software provides an efficient implementation of all functions in
the Standard Template Library. The Standard Template Library (STL) and
platforms may have different declarations and definitions, otherwise the
error messages below appears.

Original code:

#include <map>

struct A
{
int m_val;

}s

struct B

{

int m_val;

B& operator=(B &) ;
b

typedef std::map<A, B> MAP ;

int main()
{

MAP m ;
A a ;

B b ;

m.insert(std::make_pair(a,b)) ;

}

8-21

8 Troubleshooting Verification Problems

Error message:

Verifying template.cpp

"<Product>/Verifier/cinclude/new_stl/map", line 205: error: no operator
"=" matches these operands

operand types are: pair<A, B> = const map<A, B, less<A>>::value_type

{ volatile int random_alias = 0 ; if (random_alias) *((pair<Key, T> *)
_pst_elements) = x ; } ; // read of x is done here

detected during instantiation of
"pair<__pst__generic_iterator<bidirectional_iterator_tag, pair<const Key,
T>>, bool> map<Key, T, Compare>::insert(const map<Key, T, Compare>::
value_type &) [with Key=A, T=B, Compare=less<A>]" at line 23 of "/cygdrive/
c/_BDS/Test-Polyspace/sources/template.cpp"”

Using the option -no-stub-stlavoid this error message. Then, you need to
add the directory containing definitions of own STL library as a directory to
include using option -I.

The preceding message can also appear with the directory names:

"<Product>/cinclude/new_stl/map", line 205: error: no operator "="
matches these operands

"<Product>/cinclude/pst_stl/vector", line 64: error: more than one
operator "=" matches these operands:

Be careful, that other compile or linking troubles can appear with your own
template definitions.

Lib C Stubbing Errors

Extern C Functions

Some functions may be declared inside an extern “C” { } bloc in some files but
not in others. In this case, the linkage is different which causes a link error,
as it is forbidden by the ANSI standard.

Original code:

extern "C" {

8-22

Link Messages

void* memcpy(void*, void*, int);
}
class Copy

{
public:

Copy () {};

static void* make(char*, char*, int);

b
void* Copy::make(char* dest, char* src, int size)
{

return memcpy(dest, src, size);

Error message:

Pre-linking C++ sources ...

<results_dir>/test.cpp, line 2: error: declaration of function "memcpy"

is incompatible with a declaration in another translation unit

(parameters do not match)

| the other declaration is at line 4096 of "__ polyspace__stdstubs.c"
| void* memcpy(void*, void*, int);

| ~

| detected during compilation of secondary translation unit "test.cpp"

The function memcpy is declared as an external "C" function and as a C++
function. It causes a link problem. Indeed, function management behavior
differs whether it relates to a C or a C++ function.

When such error happens, the solution is to homogenize declarations, i.e. add
“extern “C” {}” around previous listed C functions.

Another solution consists in using permissive option -no-extern-C. It will
remove all declaration extern "C"

Functional Limitations on Some of Stubbed Standard ANSI
Functions

¢ gsignal.h is stubbed with functional limitations: ’signal’ and ’raise’ functions
do not follow the associated functional model. Even if the function raise

8-23

8 Troubleshooting Verification Problems

8-24

is called, the stored function pointer associated to the signal number is
not called.

e No jump is performed even if the ’setjmp’ and longjmp’ functions are called.

¢ errno.h is partially stubbed. Some math functions, for which PolySpace
uses built-in code, do no set errno but instead generate a red error when a
range or domain error occurs (see examples with NTC checks).

You can also use the compile option
POLYSPACE_STRICT_ANSI_STANDARD_STUBS (-D flag) which will only
deactivate extensions to ANSI C standard libC. Functions bzero, bcopy, bemp,
chdir, chown, close, fchown, fork, fsync, getlogin, getuid, geteuid, getgid,
Ichown, link, pipe, read, pread, resolvepath, setuid, setegid, seteuid, setgid,
sleep, sync, symlink, ttyname, unlink, vfork, write, pwrite, open, creat,
sigsetjmp, _ sigsetjmp and siglongjmpare concerned.

Troubleshooting Using the Preprocessed .ci Files

Troubleshooting Using the Preprocessed .ci Files

In this section...

“Overview” on page 8-25
“Example of ci File” on page 8-25
“Troubleshooting Methodology” on page 8-27

Overview

In the preceding paragraphs, common types of compile or linking errors
messages have been detailed. They are associated to C++ dialects, or specific
options used by the dialect (for instance Microsoft Visual C++ with the option
-import-dir).

Nevertheless, sometimes the error messages are not sufficient to find the
cause of problems. Indeed they do not correspond to common error messages
listed above.

PolySpace, as others compilers, transforms a source code to

a preprocessed code. These files are located in the folder:
<results directory>/CPP-ALL/SRC/MACROS or <results
directory>/ALL/SRC/MACROS. They have a .ciextension and they
will help to understand and find precisely the error problem.

Example of ci File

A *.ci file is a copy of original file containing whole header files inside a
unique file:

e compile flags activate some parts of code,

® macro commands are expanded,

¢ arguments which are described as “#define xxx”, are replaced by their
owned definition,

® etc.

8-25

8 Troubleshooting Verification Problems

Extension.cpp Extension.h
#include "Extension.h" #define MAX_VALUE 10
#define ABS(x) ((x)<0?(x):-(x))
Extension::Extension(int val)
{ class Extension
m_val = 0; {
ABS(val); public:
int m_val;
if (val > MAX_VALUE) Extension(int val);
m_val = -1;
} #ifdef _DEBUG
void message(char*);
#ifdef _DEBUG #else
void Extension::message(char*) {} void print(char*);
#else #endif
void print(char*) {} };
#endif

The associated file Extension.ciuses the compile flag _DEBUG:

"../sources/extension.cpp"

1
1 "<Product>/Verifier/cinclude/polyspace_std_decls.h" 1

1 "../sources/extension.cpp" 2

1 "../sources/extension.h" 1
class Extension

{
public:

int m_val;

Extension(int val);

message(char*); // _DEBUG activates the message member function
b

2 "../sources/extension.cpp" 2

Extension::Extension(int val)

8-26

Troubleshooting Using the Preprocessed .ci Files

{
m_val = 0;
((val)<0?(val): -(val)); // EXPANDED MACRO ABS

if (val > 10) // MAX_VALUE REPLACED BY 10
m_val = -1;

}

void Extension::message(char*) {}

Analyzing these files with the compile flag -D _DEBUG expands the code fully
and may help to find the problems quickly.

Troubleshooting Methodology

This guide is designed to help understanding errors messages, as well as the
differences between your compiler and PolySpace:

1 Check whether the compile error messages come from a dialect problem.

2 Check whether Verify that linking error messages are related or not to:

e A C++ Stubbing error which could be resolved by an option (like
-no-stl-stubs)

e (C-Stubbing error which could be resolved by an option or a
compilation flag like POLYSPACE_NO_STANDARD_STUBS or
POLYSPACE_STRICT_ANSI_STANDARD_STUBS

3 Check the preprocessed *.ci files to see the expanded files. Looking at the
preprocessed code can help to find errors faster.

Example with these original codes:

8-27

8 Troubleshooting Verification Problems

Child1.c Child2.c Test.h
#define DEBUG #undef DEBUG class Test
{
#include "Test.h" #include "Test.h" public:
class Child1 : public Test class Child2 : public Test Test();
{ { Test(int val);
public: public:
Child1(); Cchild2(); int getval();
Child1 (int val); Child2(int val); void setVal(int val);
void search(int val); void gshort(int val); #ifdef DEBUG
void algorithm(int val,
}; protected: int max);
int m_status; #endif
b
private:
int m_val;
b

Error message:

Pre-1linking C++ sources
"../sources/test.h", line 4: error: declaration of function
"Test::Test(const Test &)" does not match function
"Test::algorithm" during compilation of "CPP-ALL/SRC/
MACROS/Child2.cpp" (one may have been removed due to #define)
class Test

detected during compilation of secondary translation unit

"CPP-ALL/SRC/MACROS/Child2.cpp"

In this example it is clear that DEBUG is defined in child1.c but not in
child2.c which creates two different definition of the class test.

The solution can also come up by comparing the two *.ci files:

8-28

Troubleshooting Using the Preprocessed .ci Files

Test.ci

1 "../sources/Test.cpp" 2
1 "../sources/test.h" 1

class Test

{

public:

Test();
Test(int val);

int getVal();
void setVal(int val);

void algorithm(int val, int max);
private:
int m_val;

s

2 "../sources/Test.cpp" 2

Child2.ci

1 "../sources/Child2.cpp" 2
1 "../sources/Child2.h" 1
1 "../sources/test.h" 1

class Test

{

public:

Test();
Test(int val);

int getVal();

void setVal(int val);

private:
int m_val;

s

2 "../sources/Child2.h" 2

Looking at the preprocessed code can help to find errors faster.

8-29

8 Troubleshooting Verification Problems

8-30

Reducing Verification Time

In this section...

“Factors Impacting Verification Time” on page 8-30

“Displaying Verification Status Information” on page 8-31
“Techniques for Improving Verification Performance” on page 8-32
“Turning Antivirus Software Off” on page 8-35

“Tuning PolySpace Parameters” on page 8-35

“Subdividing Code” on page 8-36

“Reducing Procedure Complexity” on page 8-46

“Reducing Task Complexity” on page 8-47

“Reducing Variable Complexity” on page 8-47

“Choosing Lower Precision” on page 8-48

Factors Impacting Verification Time

These factors affect how long it takes to run a verification:

® The size of the code
¢ The number of global variables

¢ The nesting depth of the variables (the more nested they are, the longer
it takes)

® The depth of the call tree of the application

¢ The intrinsic complexity of the code, particularly with regards to pointer
manipulation

Because many factors impact verification time, there is no precise formula
for calculating verification duration. Instead, PolySpace software provides
graphical and textual output to indicate how the verification is progressing
(available on Windows and Linux platforms).

Reducing Verification Time

Displaying Verification Status Information

For server verifications, you can use the PolySpace Queue Manager to follow
the progress of your verification. For more information, see “Monitoring
Progress of Server Verification” on page 7-8.

For client verifications, you can monitor the progress of your verification using
the progress bar and Stats log in the Launcher. For more information, see
“Monitoring the Progress of the Verification” on page 7-24.

H PolySpace follow remote code verification progress 1Ol =l

File Edit Help

Send ta PolyShace Server v

i C+ Link 108 | Intertmediate : - 2 210 |m:|
00:00:55 0000 25 00015 0001 53 00:03:14 | 000056 DD:DELI
L
Search; 44 I (13
2t
é = umber of HTL : 0 ;I

Estets praver o wTC : 0
@FullLog umber of THR : 4

Certain (Fed) errors sumnmary:
- certain 0BAI, array index within bounds: [0..3], File main.cpp, line 61, columh 9

GUI files generation complete.

Generating results in a spreadsheet format in C:WPolydpaceWPoly3pace RLDatas‘analvsiszhPolyipace-Doc

Generation complete

Eaai oo ok ok ok o ok ko b ko aha aab o ao ahaol oaol ok o

kg

[l
#+*% Zoftware Safety Integration Analysis Lewel 4 done -
Kil | _>l_I

“erification completed

The progress bar highlights each completed phase and displays the amount

of time for that phase. You can estimate the remaining verification time by

extrapolating from this data, and considering the number of files and passes
remaining.

8-31

8 Troubleshooting Verification Problems

Techniques for Improving Verification Performance

This chapter suggests methods to reduce the duration of a particular
verification, with minimal compromise for the launch parameters or the
precision of the results.

You can increase the size of a code sample for effective analysis by tuning the
tool for that sample. Beyond that point, subdividing the code or choosing a
lower precision level offers better results (-O1, -O0).

You can use several techniques to reduce the amount of time required for a
verification, including

¢ “Turning Antivirus Software Off” on page 8-35

¢ “Tuning PolySpace Parameters” on page 8-35

¢ “Subdividing Code” on page 8-36

¢ “Reducing Procedure Complexity” on page 8-46

¢ “Reducing Task Complexity” on page 8-47

¢ “Reducing Variable Complexity” on page 8-47

® “Choosing Lower Precision” on page 8-48

You can combine these techniques. See the following performance tuning
flow charts:

e “Standard Scaling Options Flow Chart” on page 8-33

e “Alias Complexity Flow Chart” on page 8-34

8-32

Reducing Verification Time

Standard Scaling Options Flow Chart
Step 1: standard scaling options

- CPU must be > 1 GHz

- RAM must be > 1 Gb

- Swap files must be < 450 Mb
- Swap must be > 2x RAM

Hardware configuration ok?

Make sure no other verification is running

A slow verification can be normal
- Try the option -to passO
- Consider splitting the application

Application over 50K lines?

Set the following options:
-respect-types-in-globals
-respect-types-in-fields

Blocked in 02, O1, O0?

Refer to the the next page:
Step2: alias complexity

Still blocked?
Yes

8-33

8 Troubleshooting Verification Problems

8-34

Alias Complexity Flow Chart
Step 2: alias complexity

— | PST_CLONE_LEVEL=0" in launching ~ analysis complete)?

Status : {See step 1)
blocked in the desired precis
p CPtions -respect-TypEs-—.. ars
" Areall figures i
T available? (1) T ves
Stub all function to “puare”™ 1
- . 3 e [2 no
stub varargs ﬁm;tmnls to pure [de]e_te this e]
function calls using "#define DbgPrint (args e E“'H-___ﬁ_h
)" or stub it. o Arevarargs and T
T—__stubs pure? T
i e

- —

Launch again with “export .---f"""’E-’-GCFTS 5 (zaa ="

—

comumand. e e

I-'es
All figures are available

Intermediate language translation
has completed.

Here is a typical set of statistics. You can find them for any application by
using the polyspace-stats utility (available at MATLAB Central), at any
point after the intermediate language translation completes.

Reducing Verification Time

Some stats

Number
Number
Number
Number
Number

of
of
of
of
of

on aliases use:

alias writes: 2672
must-alias writes: 0
alias reads: 0
invisibles: 60

global invisibles: 3808

Stats about alias writes:

biggest sets of alias writes: Variable_ 1

(45), Variable_1 (32)

procedures that write the biggest sets of aliases: procedure_f_1

(583), procedure_f 2 (369), procedure_f_ 3 (264)

You can reduce the pointers complexity by inlining the
following functions

procedure_g 1 procedure_g 2
procedure_g 3

In terms of reducing code complexity, The MathWorks™ recommends that

you try the following techniques, in the order listed:

¢ “Reducing Procedure Complexity” on page 8-46
¢ “Reducing Task Complexity” on page 8-47
¢ “Reducing Variable Complexity” on page 8-47

After you use any of these techniques, restart the verification.

Turning Antivirus Software Off

Disabling or switching off any third-party antivirus software for the duration
of a verification can reduce the verification time by up to 40%.

Tuning PolySpace Parameters

Impact of Parameter Settings

Compromise to balance the time required to perform a verification and the
time required to review the results. Launching PolySpace verification with
the following options reduces the time taken for verification. However, these
parameter settings compromise the precision of the results. The less precise

8-35

8 Troubleshooting Verification Problems

8-36

the results of the verification, the more time you can spend reviewing the
results.

Recommended Parameter Tuning
The MathWorks suggests that you use the parameters in the sequence listed.

If the first suggestion does not increase the speed of verification sufficiently,
then introduce the second, and so on.

¢ Switch from -O2 to a lower precision;

® Set the -respect-types-in-globals and -respect-types-in-fields
options;

® Set the -k-1imiting option to 2, then 1, or 0;
e Manually stub missing functions which write into their arguments.

® [f some code uses some large arrays, use the -no-fold option.
For example, an appropriate launching command is

polyspace-c -00 -respect-types-in-globals -k-limiting O

Subdividing Code

® “An Ideal Application Size” on page 8-36

® “Benefits of Subdividing Code” on page 8-37

e “Possible Issues with Subdividing Code” on page 8-37
® “Recommended Approach” on page 8-39

e “Selecting a Subset of Code” on page 8-40

An Ideal Application Size

People have used PolySpace software to analyze numerous applications with
greater than 100,000 lines of code.

There always is a compromise between the time and resources required to
analyze an application, and the resulting selectivity. The larger the project
size, the broader the approximations PolySpace software makes. Broader

Reducing Verification Time

approximations produce more oranges. Large applications can require you to
spend much more time analyzing the results and your application.

These approximations enable PolySpace software to extend the range of
project sizes it can manage, to perform the verification further, and to solve
traditionally incomputable problems. Balance the benefits derived from
verifying a whole large application against the loss of precision that results.

Benefits of Subdividing Code

Subdividing a large application into smaller subsets of code provides several
benefits. You:

® Quickly isolate a meaningful subset

e Keep all functional modules

¢ Can maintain a high precision level (for example, level 02)

¢ Reduce the number of orange items

® Get correct results are correct because you do not need to remove any
thread affecting change shared data

¢ Reduce the code complexity considerably

Possible Issues with Subdividing Code
Subdividing code can lead to these problems:

® QOrange checks can result from a lack of information regarding the
relationship between modules, tasks, or variables.

® Orange checks can result from using too wide a range of values for stubbed
functions.

® Some loss of precision; the verification consider all possible values for a
variable.

When the Application is Incomplete. When the code consists of a small
subset of a larger project, PolySpace software automatically stubs many
procedures. PolySpace bases the stubbing on the specification or prototype of
the missing functions. PolySpace verification assumes that all possible values
for the parameter type are returnable.

8-37

8 Troubleshooting Verification Problems

8-38

Consider two 32-bit integers a and b, which are initialized with their full
range due to missing functions. Here, a*b causes an overflow, because a and b
can be equal to 2”31. Precise stubbing can reduce the number of incidences of
these data set issue

Now consider a procedure f that modifies its input parameters a and b. f
passes both parameters by reference. Suppose a can be from 0 through 10,
and b any value between -10 and 10. In an automatically stubbed function,
the combination a=10 and b=10 is possible, even if it is not possible with the
real function. This situation introduces orange checks in a code snippet such
as 1/(a*b - 100), where the division would be

® So, even with precise stubbing, verification of a small section of code can
introduce extra orange checks. However, the net effect from reducing the
complexity is to reduce the total number of orange checks.

e With default stubbing, the increase in the number of orange checks as the
result of this phenomenon tends to be more pronounced.

Considering the Effects of Application Code Size. PolySpace can make
approximations when computing the possible values of the variables, at any
point in the program. Such an approximation use a superset of the actual
possible values.

For instance, in a relatively small application, PolySpace software can retain
detailed information about the data at a particular point in the code. For
example, the variable VAR can take the values {-2;1;2;10;15;16;17;
25 }. If the code uses VAR to divide, the division is green (because O is not a
possible value).

If the program is large, PolySpace software simplifies the internal data
representation by using a less precise approximation, such as [-2 ; 2] U
{10} U [15 ; 17] U {25} . Here, the same division appears as an orange
check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace can further simplify the VAR range to (say) [-2 ; 20].

This phenomenon increases the number of orange warnings when the size of
the program becomes large.

Reducing Verification Time

Recommended Approach

The MathWorks recommends that you begin with file-by-file verifications
(when dealing with C language), package-by-package verifications (when
dealing with Ada language), and class-by-class verifications (when dealing
with C++ language).

The maximum application size is between 20,000 (for C++) and 50,000 lines of
code (for C and Ada). For such applications of that size, approximations are
not too significant. However, sometimes verification time is extensive.

Experience suggests that subdividing an application before verification
normally has a beneficial impact on selectivity. The verification produces
more red, green and gray checks, and fewer unproven Orange checks. This
subdivision approach makes bug detection more efficient.

Y4 of oranges

Oranges due to complexity

Oranges due to
missing parts of the
software

Size (lines of code)

Best usage,
Between 20 and 50K lines

A compromise between selectivity and size

PolySpace verification is most effective when you use is as early as possible in
the development process, before any other form of testing.

8-39

8 Troubleshooting Verification Problems

8-40

When you analyze a small module (for example, a file, piece of code, or
package) using PolySpace software, focus on the red and gray checks.
unproven checks at this stage are interesting, because most of them deal with
robustness of the application. The checks change to red, gray, or
green as the project progresses and you integrate more modules.

In the integration process, code can become so large (50,000 lines of code or
more). This amount of code can cause the verification to take an unreasonable
amount of time. You have two options:

® Stop using PolySpace verification at this stage (you have gained many
benefits already).

® Analyze subsets of the code.

Selecting a Subset of Code

Subdividing a project for verification takes considerably less verification time
for the sum of the parts than for the whole project considered in one pass.
Consider data flow when you subdivide the code.

Consider two distinct concepts:

¢ Function entry-points — Function entry-points refer to the PolySpace
execution model, because they start concurrently, without any assumption
regarding sequence or priority. They represent the beginning of your call
tree.

® Data entry-points — Regard lines in the code that acquire data as data

entry points.

Example 1

int complete_treatment_based_on_x(int input)

{

thousand of line of computation...

}

Example 2

void main(void)

{

Reducing Verification Time

int x;
X = read_sensor();
y = complete_treatment_based_on_x(x);

}
Example 3

#define REGISTER_1 (*(int *)0x2002002)

void main(void)

{
X
y

}

REGISTER_1;
complete_treatment_based_on_x(X);

In each case, the x variable is a data entry point and y is the consequence of
such an entry point. y can be formatted data, due to a complex manipulation
of x.

Because x is volatile, a probable consequence is that y contains

all possible formatted data. You could remove the procedure

complete treatment based on_x completely, and let automatic stubbing
work. The verification process considers y as potentially taking any value in
the full range data (see “Stubbing” on page 6-2).

//removed definition of complete_treatment_based_on_x

void main(void)

{
X
y

}

// what ever
complete_treatment_based_on_x(x); // now stubbed!

Typical Examples of Removable Components, According to the Logic
of the Data. Here are some examples of removable components, based on
the logic of the data:

¢ Error management modules often contain a large array of structures
accessed through an API, but return only a Boolean value. Removing the
API code and retaining the prototype causes the automatically generated
stub to return a value in the range [-2"31, 2731-1], which includes 1 and
0. PolySpace considers the procedure able to return all possible answers,
just like reality.

8-41

8 Troubleshooting Verification Problems

¢ Buffer management for mailboxes coming from missing code —
Suppose an application reads a huge buffer of 1024 char. The application
then uses the buffer to populate three small arrays of data, using a
complicated algorithm before passing it to the main module. If the
verification excludes the buffer, and initializes the arrays with random
values instead, then the verification of the remaining code is just the same.

® Display modules

Subdivision According to Data Flow. Consider the following example.

Module A reads variables varl, var2, var3
And produces variables vard, var5, varf

varl) Module A containing | 5 vard | Module B containing

moare than one function. more than one function.
i = Al i = Bl
VArS - . VAD
- AT -~ B2
= A3 *» B3
vard g L e varf

In this application, variables 1, 2 and 3 can vary between the following ranges:

Varl From 0 through 10
Var2 From 1 through 100
Var3 From —10 through 10

Module A consists of an algorithm which interpolates between vari and var2.
That algorithm uses var3 as an exponential factor, so when var1 is equal to O,
the result in var4 is also equal to O.

As a result, var4, var5 and vareé have the following specifications:

8-42

Reducing Verification Time

Ranges var4 Between —60 and 110
var5s From 0 through 12
vareé From 0 through 100
Properties And a set of e If var2 is equal to 0, than
properties between var4>vars>5.
variables

e [f var3 is greater than 4, than
var4<varbs<12

Subdivision in accordance with data flow allows you to analyze modules A
and B separately.

® A uses variables 1, 2 and 3 initialized respectively to [0;10], [1;100] and
[-10;10]

® B uses variables 4, 5 and 6 initialized respectively to [-60;110], [0;12]
and [-10;10]

The consequences are:

® A slight loss of precision on the B module verification, because now
PolySpace considers all combinations for variables 4, 5 and 6. It includes
all possible combinations, even those combinations that the module A
verification restricts.

For example, if the B module included the test
If var2 is equal to 0, than var4>var5>5
then the dead code on any subsequent else clause is undetected.

® An in-depth investigation of the code is not necessary to isolate a
meaningful subset. It means that a logical split is possible for any
application, in accordance with the logic of the data.

® The results remain valid, because there no requirement to remove (for
example) a thread that changes shared data.

® The code is less complex.

® You can maintain the maximum precision level.

8-43

8 Troubleshooting Verification Problems

8-44

Typical examples of removable components:

® Error management modules. A function has_an_error_already_occurred
can return TRUE or FALSE. Such a module can contain a large array of
structures accessed through an API. Removing API code with the retention
of the prototype results in the PolySpace verification producing a stub that
returns [-2731, 2731-1]. That result clearly includes 1 and 0 (yes and
no). The procedure has_an_error_already occurred returns all possible
answers, just like the code would at execution time.

¢ Buffer management for mailboxes coming from missing code. Suppose the
code reads a large buffer of 1024 char and then collates the data into three
small arrays of data, using a complicated algorithm. It then gives this data
to a main module for treatment. For the verification, PolySpace can remove
the buffer and initialize the arrays with random values.

¢ Display modules.

Subdivide According to Real-Time Characteristics. Another way of
splitting an application is to isolate files which contain only a subset of tasks,
and to analyze each subset separately.

If a verification initiates using only a few tasks, PolySpace loses information
regarding the interaction between variables.

Suppose an application involves tasks T1 and T2, and variable x.

If T1 modifies x and reads it at a particular moment, then the values of x
Impact subsequent operations in T2.

For example, consider that T1 can write either 10 or 12 into x and that T2 can
both write 15 into x and read the value of x. Two ways to achieve a sound
standalone verification of T2 are:

® You could declare x as volatile to take into account all possible executions.
Otherwise, x takes only its initial value or x variable remains constant,
and verification of T2 is a subset of possible execution paths. You can get
precise results, but it includes one scenario among all possible states for
the variable x.

Reducing Verification Time

® You could initialize x to the whole possible range [10;15], and then call
the T2 entry-point. This approach is accurate if x is calibration data.

Subdivide According to Files. This method is simple, but it can produce
good results when you are trying to find red errors and bugs in gray code.

Simply extract a subset of files and perform a verification using one of these
approaches:

e Use entry-points.

® (Create a main that calls randomly all functions that the subset of the code
does not call.

8-45

8 Troubleshooting Verification Problems

Reducing Procedure Complexity

Reduce procedure complexity

inline option?

The user can use the inline option applies to some function. Which function should the user add in the —

v

sequence for procedure_g #

.—-"'-) ' = =
- passes itz pointer

-2 parameters (*) to

___.-F'"-(-F '\-\.____\-
= =
o e
,,-"'ff Ty
:" write in its parameters
T —
o T G T
— =
""-\.____\-\-\- ___.--“')
L _I_'iej
,1-.;,—-—-_‘__________ is = 20 lines of C code
Y 2
e Ves T
mo—=—______ has no embedded loop =
L4 T
."-/
.-""—-

o another procedure
E“‘x 1er p -
% e
x“‘a -
< Ves

the procedure must NOT be mlined

e

no

v

sequence for procedure_f =

o -

- e
o~ 1
" are the procedure_f # e

- -

~ also n the “g~ list

-
et

- [e #)?
s (procedure_g #)7 _—

T ___-J"'-r

-\-\"'\-\.___\-\---’-‘__,-"

—_—

[Y

add the procedure in the —inline list
-inline “test procedure_g 12 other procedure”

8-46

-, -

Reducing Verification Time

For example, analyze whether a procedure pass its pointer parameters to
another procedure?

YES NO NO
void f(int *p) void f(int q) void f(int *r)
{ {
f2(p) *r=12
} }

Reducing Task Complexity

If the code contains two or more tasks, and particularly if there are more than
10000 alias reads, set the -1ightweight-thread-model option. This option
reduces:

e Task complexity

e Verification time
There are some downsides:

e [t causes more oranges and a slight loss of precision on reads of shared
variables through pointers.

® The dictionary can omit some read/write accesses.

Reducing Variable Complexity

Variable Action
Characteristic

The types are complex. Set the -k-1imiting [0-2] option.

Begin with 0. Go up to 1, or 2 in order to gain
precision.

There are large arrays Set the -no-fold option.

8-47

8 Troubleshooting Verification Problems

Choosing Lower Precision

The amount of simplification applied to the data representations depends on

the required precision level (00, 02), PolySpace software adjusts the level of
simplification. For example:

¢ .00 — shorter computation time
® .02 — less orange warnings

® .03 — less orange warnings and bigger computation time

8-48

Obtaining Configuration Information

Obtaining Configuration Information

The polyspace-ver command allows you to quickly gather information on
your system configuration. You should use this information when entering
support requests.

Configuration information includes:

e Hardware configuration

e Operating System

PolySpace Licenses

® Specific version numbers for PolySpace products
To obtain your configuration information, enter the following command:

e UNIX./Linux — <PolySpaceInstallDir>/Verifier/bin/polyspace-ver

* Windows —
<PolySpaceInstallDir>/Verifier/wbin/polyspace-ver.exe

The configuration information appears.

8-49

8 Troubleshooting Verification Problems

CA\WINNT \system32\cmd.exe

C:“PolySpace“PolySpaceFo ndCPP_R28@9b\Uerif iersubin>polyspace—ver.exe
Machine Hardware Configuration:

Number of CPlUs
CPU frequency
CPU type

Memory

Swap

stmp free space

Machine Software Configuration:

Windows P <(Service Pack 32

PolySpace Licenses:

PolySpace_Client_C_CPP:
License Mumber: DEMO
Expiration date: 28-oct—-2809

PolySpace_Server C_CPP:
License Numher: DEMO
Expiration date: 28-oct-2089%

FPolySpace _Model_Link_SL:
License Number: DEMO
Expiration date: 28-oct-208%

PolySpace Uersions:

PolySpace Uersion RZBB%h

=* Kernel CC-7.1.8.U1

= Uiewer IHME-R2B89h-U%
= Launcher IHML-R2B@7h-U%
= Remote Launcher RL-R28BA%h—U6
* Uiswal Plugin PUPG_B_1 &5

* PolySpace In One Click POC-R2B09h—-V4
= MBD Plugin HED-R2AA7h-U4
* Automatic Orange Tester AOT-R2B09bh-U4

Remote Launcher configuration
* Compatibility version 3_12_2

Server :
FPolySpace_Server_ C_CPP.mathworks.com

C:sPolySpacesPolySpaceForCandCPP_RZ2BA7h“Verifierswhin’>

Note You can obtain the same configuration information by selecting
Help > About in the Launcher.

8-50

Removing Preliminary Results Files

Removing Preliminary Results Files

By default, the software automatically deletes preliminary results files when
they are no longer needed by the verification. However, if you run a client
verification using the option keep-all-files, preliminary results files are
retained in the results directory. This allows you to restart the verification
from any stage, but can leave unnecessary files in your results directory.

If you later decide that you no longer need these files, you can remove them.
To remove preliminary results files:
1 Open the project containing the results you want to delete In the Launcher.

2 Select Tools > Clean Results.

The preliminary results files are deleted.

Note To remove all verification results from your results directory (including
the final results), select Tools > Delete Results.

8-51

8 Troubleshooting Verification Problems

8-52

Reviewing Verification
Results

e “Before You Review PolySpace Results” on page 9-2

® “Opening Verification Results” on page 9-8

* “Reviewing Results in Assistant Mode” on page 9-20

¢ “Reviewing Results in Expert Mode” on page 9-28

* “‘Importing and Exporting Review Comments” on page 9-41
® “Generating Reports of Verification Results” on page 9-44

e “Using PolySpace Results” on page 9-51

9 Reviewing Verification Results

9-2

Before You R

eview PolySpace Results

In this section...

“Overview: Understanding PolySpace Results” on page 9-2
“Why Gray Follows Red and Green Follows Orange” on page 9-3
“The Message and What It Means” on page 9-4

“The C++ Explanation” on page 9-5

Overview: Understanding PolySpace Results

PolySpace software presents verification results as colored entries in the
source code. There are four main colors in the results:

Red — Indicates code that always has an error (errors occur every time
the code is executed).

Gray — Indicates unreachable code (dead code).
Orange — Indicates unproven code (code might have a run-time error).

Green — Indicates code that never has a run-time error (safe code).

When you analyze these colors, remember these rules:

An instruction is verified only if no run-time error is detected in the
previous instruction.

The verification assumes that each run-time error causes a “core dump.”
The corresponding instruction is considered to have stopped, even if the
actual run-time execution of the code might not stop. This means that
red checks are always followed by gray checks, and orange checks only
propagate the green parts through to subsequent checks.

Focus on the verification message. Do not jump to false conclusions. You
must understand the color of a check step by step, until you find the root
cause of a problem.

Determine the cause by examining the actual code. Do not focus on what
the code is supposed to do.

Before You Review PolySpace® Results

Why Gray Follows Red and Green Follows Orange

Gray checks follow red checks, and green checks are propagated out of
ones.

In the following example, consider why:

¢ The gray checks follow the red in the red function.

® There are green checks relating to the array.

void red(void) extern int Read_An_Input(void);
{ void propagate(void)
int x; {
x =1/ x; int X;
X = x + 1; int y[100];
} X = Read_An_Input();
y[X] =05 //
y[X] = 0;
}

Consider each line of code for the red function:

¢ When PolySpace divides by X, X is not initialized. Therefore the
corresponding check (Non Initialized Variable) on X is red.

® As a result, PolySpace stops all possible execution paths because they
all produce an RTE. Therefore the subsequent instructions are gray
(unreachable code).

Now, consider each line of code for the propagate function:

¢ Xis assigned the return value of Read_An_Input. After this assignment,
X = [-2731, 2731-1].

® At the first array access, you might see an “out of bounds” error because
X can equal -3 as well as 3.

® Subsequently, all conditions leading to an RTE are truncated — they are no
longer considered in the verification. On the following line, all executions
in which X = [-2731, -1] and [100, 2731-1] are stopped.

9 Reviewing Verification Results

® At the next instruction, X = [0, 99].

e Therefore, at the second array access, the check is green because X = [0, 99].

Summary
Green checks can be propagated out of checks.

The Message and What It Means

PolySpace software numbers checks to correspond to the code execution order.
Consider the instruction:

X++;

PolySpace first checks for a potential NIV (Non Initialized Variable) for
x, and then checks the potential OVFL (overflow). This action mimics the
actual execution sequence.

Understanding these sequences can help you understand the message
presented by PolySpace, and what that message means.

Consider an orange NIV on x in the test:
if (x > 101);

You might conclude that the verification does not keep track of the value of x.
However, consider the context in which the check is made:

extern int read_an_input(void);

void main(void)
{
int x;
if (read_an_input()) x = 100;
if (x > 101) //
{ x++; } // gray code
}

Before You Review PolySpace® Results

Explanation

You can see the category of each check by clicking it in the Viewer. When you
examine an orange check, you see that any value of a variable that results in
a run-time error (RTE) is not considered further. However, as this example
NIV (Non Initialized Variable) shows, any value that does not cause an RTE
is verified on subsequent lines.

The correct interpretation of this verification result is that if x is initialized,
the only possible value for it is 100. Therefore, x can never be both initialized
and greater than 101, so the rest of the code is gray. This conclusion may be
different from what you first suspect.

Summary
In summary:

e if "(x > 100)" does NOT mean that PolySpace does not know anything
about x.

* if "(x > 100)" DOES means that PolySpace does not know whether X is
initialized.

When you review results, remember:

® Focus on the PolySpace software message.

® Do not assume any conclusions.

The C++ Explanation

Verification results depend entirely on the code that you are verifying. When
interpreting the results, do not consider:

® Any physical action from the environment in which the code operates.
® Any configuration that is not part of the verification.

® Any reason other than the code itself.

The only thing that the verification considers is the C++ code submitted to it.

9 Reviewing Verification Results

Consider the following example, paying particular attention to the dead (gray)
code following the "if" statement:

extern int read_an_input(void);

void main(void)
{
int x;
int y[100];
X = read_an_input();
yix 1 =20; //
yIx-1] = (1 / X) + X 3
if (x == 0)
y[x] = 1; // gray code on this line
}

You can see that:

® The line containing the access to the y array is unreachable.
® Therefore, the test to assess whether x = 0 is always false.

¢ The initial conclusion is that "the test is always false." You might
conclude that this results from input data that is not equal to 0. However,
Read_An_Input can be any value in the full integer range, so this is not the
correct explanation.

Instead, consider the execution path leading to the gray code:

® The orange check on the array access (y[x]) truncates any execution path
leading to a run-time error, meaning that subsequent lines deal with only
x = [0, 99].

® The orange check on the division also truncates all execution paths that
lead to a run-time error, so all instances where x = 0 are also stopped.
Therefore, for the code execution path after the orange division sign, x
= [1; 99].

® xis never equal to O at this line. The array access 1s green (y (x — 1).

9-6

Before You Review PolySpace® Results

Note For the array access at the previous line (y[x]), we have X ~ [-2731,
2731-1] — hence the on (1/X).

Summary

In this example, all the results are located in the same procedure. However,
by using the call tree, you can follow the same process even if an orange check
results from a procedure at the end of a long call sequence. Follow the "called
by" call tree, and concentrate on explaining the issues by reference to
the code alone.

9-7

9 Reviewing Verification Results

Opening Verification Results

In this section...

“Downloading Results from Server to Client” on page 9-8
“Downloading Results to UNIX or Linux Clients” on page 9-11
“Downloading Results from Unit-by-Unit Verifications” on page 9-12
“Opening Verification Results” on page 9-12

“Exploring the Viewer Window” on page 9-13

“Selecting Viewer Mode” on page 9-17

“Setting Character Encoding Preferences” on page 9-17

Downloading Results from Server to Client

When you run a verification on a PolySpace server, the PolySpace software
stores the results on the server. To view your results, download the results
file from the server to the client.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

To download verification results to your client system:

1 Double-click the PolySpace Spooler icon.

The PolySpace Queue Manager Interface opens.

Opening Verification Results

i PolySpace Queue Manager Interface

Cperations Help

D | Authar
NOLT_Marme

Application Rezultz directory CPU| Status | Date |Lan

Training_Project C:\polyspace_projecth, anze running 008,

Note The PolySpace Queue Manager is not available on UNIX or Linux
systems. If you are using the PolySpace Client for C/C++ on a UNIX or
Linux system, you must use the psqueue-download command to download
your results. For information on managing verification jobs from the
command line, see “Managing Verifications in Batch” on page 7-27.

2 Right-click the job that you want to view. From the context menu, select
Download Results.

Note To remove the job from the queue after downloading your results,
from the context menu, select Download Results And Remove From
Queue.

The Browse For Folder dialog box opens.

9-9

9 Reviewing Verification Results

9-10

Directory where ko store the results

I2) Perl -
=) PalySpace
=l 15 polyspace_project
I includes J
I3 resulks
I sources
I3 PalvSpace_Results -
Folder: I results

Make Mew Falder | (0] 4 I Cancel |

3 Select the folder into which you want to download results.
4 Click OK to download the results and close the dialog box.

When the download is complete, a dialog box opens asking if you want to
open the PolySpace Viewer.

Queston =

Download completed, Do you want ko open PolySpace Yiewer 7

Yes Mo |

5 Click Yes to open the results.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

Opening Verification Results

Downloading Results to UNIX or Linux Clients

If you are using PolySpace Client for on a UNIX or Linux system, the Queue
Manager interface is not available. To download results from the PolySpace
Server, you must use the psqueue-download command to download your
results.

To download your results, enter the following command:

<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-download <id>
<results dir>

The verification <id> is downloaded into the results directory <results dir>.

Note If you download results before the verification is complete, you get
partial results and the verification continues.

Once you download results, they remain on the client, and you can review
them at any time using the PolySpace Viewer.

The psqueue-download ccmmand has the following options:

e [-f] force download (without interactivity)
® -admin -p <password> allows administrator to download results.
e [-server <name>[:port]] selects a specific Queue Manager.

® [-v]|version] gives release number.

Note When downloading a unit-by-unit verification group, all the unit
results are downloaded and a summary of the download status for each unit
1s displayed.

For more information on managing verification jobs from the command line,
see “Managing Verifications in Batch” on page 7-27.

9-11

9 Reviewing Verification Results

Downloading Results from Unit-by-Unit Verifications

If you run a unit-by-unit verification, each source file in sent to PolySpace
Server individually. The queue manager displays a job for the full verification
group, as well as jobs for each unit (using a tree structure).

You can download and view verification results for the entire project, or for
individual units.

To download the results from unit-by-unit verifications:
¢ To download results for an individual unit, right-click the job for that unit,

then select Download Results.

The individual results are downloaded and can be viewed as any other
verification results.

¢ To download results for a verification group, right-click the group job, then
select Download Results.

The results for all unit verifications are downloaded, as well as an HTML
summary of results for the entire verification group.

Opening Verification Results
Use the PolySpace Viewer to review the results of your verification.

Note You can also open the Viewer from the Launcher by clicking the Viewer
icon in the Launcher toolbar with or without an open project.

To open the verification results:

1 Double-click the PolySpace Viewer icon.

2 Select File > Open.

9-12

Opening Verification Results

3 In Please select a file dialog box, select the results file you want to view.

4 Click Open.

The results appear in the Viewer window.

Exploring the Viewer Window
e “Overview” on page 9-13

® “Procedural Entities View” on page 9-15

Overview
The PolySpace Viewer looks like the following graphic.

9-13

9 Reviewing Verification Results

9-14

Coding review progress view

Selected check view

File Edt ‘“Windows Help

space Viewer - C\polyspace_project\results\RTE_px_02_Training_Project_LAST | |

=101 x|

| ofm] e«

|| x| 2 v =+

/i B O e i J N-SHR QJ ‘é‘E ﬂﬁ“m Cpﬁﬂssistantl

NIV SCAL
IUBFII Zm Ilocal ouFL =HF NHT P CPP COR. PO

INIU I FLOAT I
FRu |02 | aip oor Exc TUET AsRT NG | NTL UNR

Coding review progress

Caurt | Pr...|

Mo check currently selected

Mo check selected nia nfa
b reviewed fnb to reviesy (nia) hia nia Il @I
Software reliakility indicator nia nia

>

Procedural entties

t|x ‘?l\/ Linel

|

B roiing_priec
I%—J)olyspace_main.cpp
|b—exception.stdh

|h—new.stdh

@—(mining.cpp

$—(mining.h
@—_polyspace_stdstuhs.c
E—_polyspace_stdstuhscpp.cpp

4 |

Trai

110

ning_Project

45
1

42

1
1
1
1
1
1
1

i

4
=4 Yariables Yie ol Fm ol
4
H
Training_Project
E—jolyspace_main._
“EEm—— AT

Source file: __polyspace] stdstubscpp.cpp lpDlyspace_stdstuhscpp.cpp Line: 1

Procedural
entities view

Variables Source code Call tree
view view view

The appearance of the Viewer toolbar depends on the Viewer mode. By
default, you see the expert mode toolbar.

Opening Verification Results

WoOB L e i J :’SV.N-SHRJ- ‘é’E- i Jlm G Assistant

I ! I WIY | SCAL .] ! . . I HIM I ! . .
oBAI - Zow | BN BRED SHE o WNT | 0P - CRP - GOR - FRY | S0E | WIP O OOP . EXC

FLOAT |
OUFL

In both expert mode and assistant mode, the Viewer window has six sections
below the toolbar. Each section provides a different view of the results. The

following table describes these views.

This View...

Displays...

Procedural entities view (lower left)

List of the diagnostics (checks) for
each file and function in the project

Source code view (lower right)

Source code for a selected check in
the procedural entities view

Coding review progress view (upper
left)

Statistics about the review progress
for checks with the same type and
category as the selected check

Selected check view (upper right)

Details about the selected check

Variables view

Information about the global
variables declared in the source code

Call tree view

Tree structure of function calls

You can resize or hide any of these sections.

Procedural Entities View

The procedural entities view, in the lower-left part of the Viewer window,
displays a table with information about the diagnostics for each file in the
project. The procedural entities view is also called the RTE (run-time error)
view. The procedural entities view looks like the following graphic.

9-15

9 Reviewing Verification Results

Procedural entities X + |Line|...| &

| I
[-iﬂ---_:: WSPSCE_MEin. Cpp 1)1 100 | pohyspace_main.cpp
Eiﬂ--ax:sapti:nr.;t-:l‘ 0 [exception.stdh
Eh...ra_f,.;_at.:r 0 [new.stdh
|Ei§|...|-; ning.cpp 45 i B2 [training.cpp
EE|- nineg. h 2 L 100 [training. h
Eiﬂ---_pah.rapa:e_at-: stubs.c i 0 |_polyspace__stdstub
|E£---_pahr5pa:>a_5t-: stubscpp.cpp 1 0 | _polyspace__stdstub

The file example.c is red because its has a run-time error. PolySpace software
assigns to a file the color of the most severe error found in that file. The first
column of the table is the procedural entity (the file or function). The following
table describes some of the other columns in the procedural entities view.

Column
Heading

Indicates

[1]

Number of red checks (operations where an error always
occurs)

Number of gray checks (unreachable code)

Number of orange checks (warnings for operations where
an error might occur)

Number of green checks (operations where an error never
occurs)

o | | | 1 |

Selectivity of the verification (percentage of checks that are
not orange)
This is an indication of the level of proof.

Tip If you see three dots in place of a heading, J, resize the column until you
see the heading. Resize the procedural entities view to see additional columns.

9-16

Opening Verification Results

Note You can select which columns appear in the procedural entities view
by editing the preferences. To learn how to add a Reviewed column, see
“Making the Reviewed Column Visible” on page 9-35.

What you select in the procedural entities view determines what you see in
the other views. In the examples in this chapter, you learn how to use the
views and how they interact.

Selecting Viewer Mode

You can review verification results in expert mode or assistant mode:

¢ In expert mode, you decide how you review the results.
® In assistant mode, PolySpace software guides you through the results.

You switch from one mode to the other by clicking the appropriate button
in the Viewer toolbar.

G Assistant

~'§.'.‘ Expert

Setting Character Encoding Preferences

If the source files that you want to verify are created on an operating system
that uses different character encoding than your current system (for example,
when viewing files containing Japanese characters), you receive an error
message when you view the source file or run certain macros.

The Character encoding option allows you to view source files created on
an operating system that uses different character encoding than your current

system.

To set the character encoding for a source file:

9-17

9 Reviewing Verification Results

9-18

1 In the Viewer, select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.

2 Select the Character encoding tab.

B& Preferences PolySpace Viewer @

Tools Menu || Table options || Toolbars options | Mizcelaneous | Assistant configuration

Specifies the character encoding used by the aperating syvstem on which the source file was created.

You can choose your character encoding with a double click on the wanted one inthe following list.

Thiz alloves you to viewe source files crested on an operating systen that uses different character encoding than the current system.

Yiethamese (Windows) (windoves-1258)

16-bits UCS Transformation Format, byte arder idertified by an optional byte-order mark
16-bits Unicode (or UCS) Transformation Format, litle-endian byte order
16-bits Unicaode Transformation Format, big-endian byte order
16-bits Unicode Transformation Format, litle-endian byte order
S-hits LCS Transformation Format

Arerican Standard Code for Information Interchange

Arabic (Windovs)

Baltic (Windows)

Chinese [Simplified)

Chinese [Simplified) PRC standard

Chinese [Simplified), EUC encoding, GB2312

Chinese [Traditional)

Chinese [Traditional) (Windows))

Chinese [Traditional) with Hong Kong extensions

Chinese [Traditional) with Hong Kong extensions (Mindows)
Chinese [Traditional), EUC encoding, CHS11643 (Plane 1-3)
Corillic: for (Wvindows)

Eastern European (Windowves)

Greek (Windows)

Hehrewy (Windows)

Indic: zcripts

Japaneze (Mindows)

Japaneze with halfwidth Watakara (Mndows 150 20229

(UTF-18)
[x-UTF-16LE-BCh)
(LUTF-1EBE)
(UTF-16LE)
[UTF-&)
(US-AZCI)
(wvindoves-1256)
(wvindoes-1 257
[GEK)

(GE15030)
[x-ELIC-CR)

(Big=)
[x-windones-9500
(BigS-HHSCS)
[x-MZ350-HKECE)
[x-ELIC-TWv)
(wvindoes-12517
(wvindowes-1250)
(wvindoves-1253)
(wvindowves-1255)
[x-1ZC091)
[wvindoves-31))
[x-windones-502217

s

b

Reszet to default character encoding: Japanese, Shift-JIS (Shift_JIS) l

Hote: “ou must restart the Vievwer to use the newe character encoding settings .

[oK] [Spply

|[coen

Opening Verification Results

3 Select the character encoding used by the operating system on which the
source file was created.

4 Click OK.

5 Close and restart the Viewer to use the new character encoding settings.

9-19

9 Reviewing Verification Results

9-20

Reviewing Results in Assistant Mode

In this section...

“What Is Assistant Mode?” on page 9-20

“Switching to Assistant Mode” on page 9-20

“Selecting the Methodology and Criterion Level” on page 9-21
“Exploring Methodology for C++” on page 9-22

“Defining a Custom Methodology” on page 9-24

“Reviewing Checks” on page 9-25

“Saving Review Comments” on page 9-27

What Is Assistant Mode?

In assistant mode, PolySpace software chooses the checks for you to review
and the order in which you review them. PolySpace software presents checks
this order:

1 All red checks
2 All blocks of gray checks (the first check in each unreachable function)

3 Orange checks, according to the methodology and criterion level that you
select

For more information about methodologies and criterion levels, see “Selecting
the Methodology and Criterion Level” on page 9-21.

Switching to Assistant Mode

If the Viewer is in assistant mode, the mode toggle button is Expert. If the
Viewer is in expert mode, the mode toggle button is Assistant. To switch
from expert mode to assistant mode:

_) G Assistant
e (Click the Viewer mode button .

The Viewer window toolbar displays controls specific to assistant mode.

Reviewing Results in Assistant Mode

JIMethndnlngy for Model Based Designedj r— |_ Skip gray chechks 4 <§ '@}' §> [
1 2 a

The controls for assistant mode include:

® A menu to select the review methodology for orange checks.
® A gslider to select the criterion level within that methodology.
¢ A check box for omitting gray checks.

® Arrows for navigating through the reviews.

Selecting the Methodology and Criterion Level

A methodology is a named configuration set that defines the number of orange
checks, by category, that you review in assistant mode. Each methodology has
three criterion levels. Each level specifies the number of orange checks for a
given category. The levels correspond to different development phases that
have different review requirements. To select a methodology and level:

1 From the methodology menu, select Methodology for C++.

Methodalogy for Model Based Designedll

Methodalogy for Ada
Methodology for C

hethodalagy for C++

Methodelogy for Model Based Designed

2 Select the appropriate level on the level slider.

For the configuration Methodology for C++, this table describes the three

levels.
Level Description
1 Fresh code

9-21

9 Reviewing Verification Results

9-22

Level Description
2 Unit tested code
3 Code Review

These three levels correspond to phases of the development process.

Exploring Methodology for C++

A methodology defines the number of orange checks that you review in
assistant mode. Each methodology has three criterion levels that specify
increasing levels of review. These levels correspond to different development
phases that have different review requirements.

Note You cannot change the parameters defined in the Methodology for C++,
but you can create your own custom methodologies.

To examine the configuration for Methodology for C++:

1 Select Edit > Preferences.

The Preferences PolySpace Viewer dialog box opens.
2 Select the Assistant configuration tab.

You see the configuration for Methodology for C++.

On the right side of the dialog box, a table shows the number of orange
checks that you review for a given criterion and check category.

Reviewing Results in Assistant Mode

ameous ; Assistant configuration i

—Mummber of checks to revies:

Criterion 1 Criterion 2 Criterion 3
COmman
il 2 20 AL
IS L 10 S0 AL
S-0%FL |10 a0 AL
CoR 10 10
Py = 10 AL
Pl l 10
F-o%FL = 10 20
ASRT 3 20
T2 & CH+ only
CE&| 10 20 AL
SHF 2 10 AL
IDF 10 20
P 10 20

For example, the table specifies that you review five orange ZDV checks
when you select criterion 1. The number of checks increases as you move
from criterion 1 to criterion 3, reflecting the changing review requirements
as you move through the development process.

In the lower-left part of the dialog box, the section Review threshold
criterion contains text that appears in the tooltip for the criterion slider
on the Viewer toolbar (in assistant mode).

9-23

9 Reviewing Verification Results

Configuration set

methodology far C++ LI

Feview threzhaold criterion

Criterion 1 Fresh code
Criterion 2 it tested
Criterion 3 Final wersion

The table describes the criterion names for the configuration Methodology

for C++.
Criterion Name in the Tooltip
1 Fresh code
2 Unit tested
3 Code Review

These names correspond to phases of the development process.

3 Click OK to close the dialog box.

Defining a Custom Methodology

A methodology defines the number of orange checks that you review in
assistant mode. You cannot change the predefined methodologies, such as
Methodology for C, but you can define your own methodology.

To define a custom methodology:

1 Select Edit > Preferences.
The Preferences PolySpace Viewer dialog box opens.
2 Select the Assistant configuration tab.

3 In the Configuration set drop-down menu, select Add a set.

9-24

Reviewing Results in Assistant Mode

The Create a new set dialog box opens.
4 Enter a name for the new configuration set, then click Enter.
5 Enter the number of checks to review for each type, and each criterion level.

6 Click OK to save the methodology and close the dialog box.

Reviewing Checks
In assistant mode, you review checks in the order in which PolySpace software
presents them:

1 All reds.

2 All blocks of gray checks (the first check in each unreachable function).

Note You can omit gray checks. In the toolbar, select the Skip gray
checks check box.

3 Orange checks, according to the methodology and criterion level and that
you select.

To navigate through these checks:
b

¢ The procedural entities view (lower left), expands to show the current
check.

1 Click the forward arrow

9-25

9 Reviewing Verification Results

® The source code view (lower right) displays the source code for this check.

® The current check view (upper right) displays information about this
check.

Note You can display the calling sequence and track review progress. See
“Reviewing Results in Expert Mode” on page 9-28.

2 Review the current check.

3 Continue to click the forward arrow until you have gone through all of
the checks.

9-26

Reviewing Results in Assistant Mode

After the last check, a dialog box opens asking if you want to start again
from the first check.

Wrapping search ﬂ

@ End of the set of checks under rewview,
Do wou wank bo skark again From the First check?

4 Click No.

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

9-27

9 Reviewing Verification Results

Reviewing Results in Expert Mode

In this section...

“What Is Expert Mode?” on page 9-28

“Switching to Expert Mode” on page 9-28

“Selecting a Check to Review” on page 9-29

“Displaying the Call Sequence for a Check” on page 9-31
“Displaying the Access Sequence for Variables” on page 9-32
“Tracking Review Progress” on page 9-33

“Making the Reviewed Column Visible” on page 9-35
“Filtering Checks” on page 9-37

“Types of Filters” on page 9-37

“Creating a Custom Filter” on page 9-39

“Saving Review Comments” on page 9-40

What Is Expert Mode?

In expert mode, you can see all checks from the verification in the PolySpace
Viewer. You decide which checks to review and in what order to review them.

Switching to Expert Mode

If the Viewer is in expert mode, the mode toggle button is Assistant. If the
Viewer is in assistant mode, the mode toggle button is Expert. To switch
from assistant to expert mode:

e (Click the Viewer mode button:
{Jﬁ.‘ Expert

The Viewer window toolbar displays buttons and menus specific to expert
mode.

9-28

Reviewing Results in Expert Mode

Selecting a Check to Review
To review a check in expert mode:

1 In the procedural entities section of the window, expand any file containing
checks.

2 Expand the procedure containing the check that you want to review.

You see a color-coded list of the checks:

[F--MathLitils:: Pointer_Amthmetics

Each item in the list of checks has an acronym that identifies the type

of check and a number. For example, IDP.11, IDP stands for Illegal
Dereferenced Pointer. For more information about different types of checks,
see “Check Descriptions”in the PolySpace Products for C Reference.

3 Click the check that you want to review.

The source code view displays the section of source code where this error
occurs.

9-29

9 Reviewing Verification Results

R
[

65 int tab[lo0];

(13 int i, *p = tab:

67

3] for(i = 0; 1 <« 100; i+, pH+]

69 Fpo= 0: —l

70

71 if (u.randow int() == 0]

T2 p o= 32 A4 Dut of bounds

73

74 i = u.random_int(];

75 if (w.random inti)) ip-i) = 10:

76

77 if (01 && i<=100)

75 | i’

4] »

4 Place your cursor over any colored check in the code.

A tooltip provides ranges for variables, operands, function parameters,
and return values.

9-30

Reviewing Results in Expert Mode

Q2 int i, *p = array:

93

94 forii = 0; 1 < 1007 i++)
a5 {

5 p o= 0;:

a7 Pt

95 i

99

= example.c

100 if(get bus ztatus() > 0]
101 ! & returned value of get_bus_status (int 32): fullrange [-231 . 231-1]

10z ILTOEC ULl _PLESSULEL] = o)

103 I

104 Fp o= 52 f* Out of bounds */
105 i

106 else

107 i

1los it+:

109 i

110 i

5 In the code, click the red check.

You see a message box that describes the error.

Displaying the Call Sequence for a Check

You can display the call sequence that leads to the code associated with a

check. To see the call sequence for a check:

1 Expand the procedure containing the check that you want to review.

2 Select the check that you want to review.

3 In the toolbar, click the call graph button.

&

9-31

9 Reviewing Verification Results

A window displays the call graph.

Training_Proiect - Call graph for check training.cpp Mat Pointe - |EI|1|

él 116% J== . . i+

Training_Project - Call graph for check training. cpp MathUtils: :Pointer _Arithmetic{).IDP. 11 I

_polyspace_main.cpp training.cpp fraining.cpp
main MathlUtils: :Pointer_Arithmetic() IDP.11

The call graph displays the code associated with the check.

Displaying the Access Sequence for Variables

You can display the access sequence for any variable that is read or written
in the code.

To see the access graph:

1 Select the Variables view.

2 Select the variable you want to view.

hat
3 Click the call graph button in the toolbar. é{

A window displays the access graph.

9-32

Reviewing Results in Expert Mode

New_Project - Access graph for single_file_analysis.c vO

Mew_Project - Access graph for single_file_analysis.c v0 I

single_file_analysis.c

o

vO READ

main.c single_file_analysis.c single_file_analysis.c
main generic_validation functional_ranges

single_file_analysis.c

oy

vO WRITE

The access graph displays the read and write access for the variable.

Tracking Review Progress

You can keep track of the checks that you have reviewed by marking them. To
mark that you have reviewed a check:

1 Expand the procedure containing the check that you want to review.

2 Click the check that you want to review.

In the upper-left part of the window, you see a table with statistics about
the review progress for that category and severity of error.

9-33

9 Reviewing Verification Results

9-34

I Coding review progress Count |Progress
Inum IDP reviewed [num IDP to review (Red) |0f1 0
Inum reviewed / num to review (Red) 01]
ISu:uf't'.r\'arE reliability indicator 35/102 a6
I

The Count column displays a ratio and the Progress column displays the
equivalent percentage. The first row displays the ratio of reviewed checks
to total checks that have the color and category of the current check. In
this example, the first row displays the ratio of reviewed red IDP checks to
total red IDP errors in the project.

The second row displays the ratio of reviewed checks to total checks that
have the color of the current check. In this example, this is the ratio of red
errors reviewed to total red errors in the project. The third row displays the
ratio of the number of green checks to the total number of checks, providing
an indicator of the reliability of the software.

In the upper-right part of the Viewer window, you see the information
about the current check.

training.cpp § Mathltils::Painter_Arithimetic £ line Y2 7 column 4

*n o= 5; /4 Out of bounds
r =

IEerr ! pointer is outside its bounds

3 In the comment box, enter your comments.

4 Select the check box to indicate that you have reviewed this check.

The software updates the ratios of errors reviewed to total errors in the
Coding review progress part of the window.

I Coding review progress Count |Progress
Inum IDP reviewed [num IDP to review (Red) |1f1 100
Inum reviewed / num to review (Red) 11 100
ISu:uf't'.-x'arE reliability indicator 358/102 a6
I

Reviewing Results in Expert Mode

Making the Reviewed Column Visible

You can change the PolySpace Viewer preferences so that the procedural
entities part of the window displays a Reviewed column.

1 Select Edit > Preferences.

2 Select the Table options tab.

3 Under Display columns in RTE view, select the Reviewed check box.
Now the Table options tab looks like the following figure.

.Preferences PolySpace Yiewer

Tools Wenu Takle options | Toolbars Dptiu:unsl hizcellansous

Dizplay columns in RTE wiesw Dizplay columns Wariable

IV Gray ¥ 1 read
v orange ¥ Mi werite
¥ Green v Wiiting Tasks
¥ Line v Reading Tasks
I¥ Colurnn I¥ Protection
¥ Tatal Selectivity | Uzage
IV Details v Line
¥ Coluran
[comnerts IV File

v Detailed Type

v walues

4 Click OK to apply the preference and close the dialog box.

In the Procedural entities view, you see a column of check boxes.

9-35

9 Reviewing Verification Results

9-36

Procedural entities " |Linel...| & Details ...

ﬁ Training_Project 45 &2 r
-_pohyspace_main. cpp 100 | polyspace main.cpp| [T
[H]--exception. stdh 0 fexxception.stdh |_
[H]--mezswr. stdh 0 |new.stdh I_
(- training.cop 45 B2 [training.cpp |-
B-MathUtils: :Close_To_Ze 0 2 | 16 | 63 [training.cpp |_
- MsthlHils: :Mon_Infinite_Loop & 39 | 15 | 100 ftraining. cpp |_

- MathUtils: :Pointer_Arithmetic]) &1 | 16 | 86 |training.cpp r

..... o EXC.OD a1 function doss not th... |_

..... W OVFL.4 68 |22 zcalar varisble dos | [

..... ~ UMNFL.E 88 |23 scalar varisble doss. .. |_

..... o EXNCE ™™ |17 call to random_int d.... |_

..... +F MNT.10 71|17 this-pointer of rande...| [

..... -i - T2 | 4 Error ; pointer is out... |7

..... W EXC.13 T4 |18 call to random_int d... |-

..... o NNT.14 T4 | 18 this-pointer of rande...| [

..... o EXC.15 TH |18 call to random_int d... I_

Tip If you do not see this column, resize Procedural entities so that you see

the column. Resize the column to see the Reviewed label.

Note Selecting a check box in the Reviewed column automatically:

e Selects the check box for that check in the current check view (upper-right

part of the window).

¢ Updates the counts in the coding review progress view (upper-left part
of the window).

Reviewing Results in Expert Mode

Filtering Checks

You can filter the checks that you see in the Viewer so that you can focus
on certain types of checks. PolySpace software provides three predefined
composite filters, a custom composite filter, and several individual filters.

The default filter is User def.

To filter checks, select a filter from the filter menu.

User def "I

Filter all
Alpha

User def

Beta
Zamma
Undefined

Types of Filters

There are three types of filters:

¢ “Individual Filters” on page 9-37
* “Composite Filters” on page 9-38
¢ “Custom Filters” on page 9-38

Individual Filters

You can use an individual filter to display or hide a given check category, such
as IDP. When a filter is enabled, you do not see that check category. For
example, when the IDP filter is enabled, you do not see IDP checks. When
the filter is disabled, you see that check category. For example, when the IDP
filter is disabled, you see IDP checks. You can also filter by check color. To
enable or disable an individual filter, click the toggle button for that filter on
the toolbar.

9-37

9 Reviewing Verification Results

9-38

Tip The tooltip for a filter button indicates to you what filter the button is
for and whether the filter is enabled or disabled.

Note When you filter a check category, you do see some red checks with
that category.

Composite Filters

Composite filters combine individual filters, allowing you to show or hide
groups of checks.

Use This Filter... To...

Alpha Show all checks

Beta Hide NIV, NIVL, NIP, Scalar OVFL,
and Float OVFL checks

Gamma Show red and gray checks

User def Hide checks as defined in a custom

filter that you can modify

Custom Filters

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def and is the default composite filter. By
default, the custom filter hides the OBAI, NIV local, IDP, COR, IRV, NIV
other, NIP, and NTL checks, as shown in the following figure.

I . I NIV
OBAL - ZDV)55

i J H-SHR - éfv J ‘E:E- i JI vI- G Assistant

ZCAL I I I NIV I FLOAT I
© SHF - HWT | IDP . CPP | COR . FRM . jpo. | WIF . Q0P . EWC - gy - RERT - WTC | NTL - UMR - INF -

LoR

To modify the custom filter, see “Creating a Custom Filter” on page 9-39.

Reviewing Results in Expert Mode

Creating a Custom Filter

The custom filter is a composite filter that you define. It appears on the
composite filter menu as User def.

To modify the custom filter:

1 From the composite filters menu, select User def.

2 Select Edit > Custom filters.

The Custom filter setup dialog box opens.

Custom filter setup - PolySpace Viewer

Select the checks or colors to hide when the custom filter is set.

rCheck Filter

rColor Filter

¥ Dut of Bound Array Index Checks

¥ Mon-Initialized Local Variable Checks

I~ Scalar Overfiow Checks

[~ shift Amount out of Bounds or Left Operand of Left Shift Checks

[this-pointer of function is not null Checks

[Ilegal Dereferenced Pointer Checks
errors that are C++ related and are not covered by the EXC and OOP filters.

[~ This incdudes checks such as array size is strictly positive, typeid argument is correct, and dynamic
casts are valid.

[¥ Correctness Condition Checks

™ Function Returns a Value Checks

¥ Mon-Initialized Variable Checks

¥ Mon-Initizlized Pointer Checks

r errors that relate to Object Criented Programming and inheritance.
This includes checks related to virtual function calls, this-peinter validity.

r errors that relate to exception handling.
Exception handling deals with the try block and exception block.

I~ Float Overflow Checks

I~ User Assertion Checks

I~ Unknown Mon-Termination of Call Checks

[Mon-Termination of Loop Checks

I~ Unreachable Code Checks

[informative checks induding information related to implicit and potential function calls.

[value On Assigned (only displayed, not counted)

[~ Gray Checks

I~ Orange Checks

I~ Green Checks

[~ Errors in non executable procedures

[~ Orange not containing additional information

rFloat / Scalar Filters
[~ Float Checks
™ Scalar Checks

=10l x|

Variable Type Filter

[~ MNon-Shared Variables

Ok | Apply |

Cancel |

9-39

9 Reviewing Verification Results

9-40

3 Clear the filters for the checks that you want to display. For example, if
you clear the Out of Bound Array Index Checks box, you see the OBAI
checks.

Note You do not have to change any of the selections for this tutorial.

4 Select the filters for the checks that you do not want to display.
5 Click OK to apply the changes and close the dialog box.
PolySpace software saves the custom filter definition in the Viewer

preferences.

Saving Review Comments

After you have reviewed your results, you can save your comments with the
verification results. Saving your comments makes them available the next
time you open the results file, allowing you to avoid reviewing the same
check twice.

To save your review comments:

1 Select File > Save Checks and Comments.

Your comments are saved with the verification results.

Note Saving review comments also allows you to import those comments into
subsequent verifications of the same module, allowing you to avoid reviewing
the same check twice.

Importing and Exporting Review Comments

Importing and Exporting Review Comments

In this section...

“Reusing Review Comments” on page 9-41
“Exporting Review Comments to Other Verification Results” on page 9-41

“Importing Review Comments from Previous Verifications” on page 9-42

Reusing Review Comments

After you have reviewed verification results on a module, you can reuse your
review comments with subsequent verifications of the same module. This
allows you to avoid reviewing the same check twice, or to compare results
over time.

The PolySpace Viewer allows you to either:

¢ Export review comments from the current results to another set of results.

® Import review comments from another set of results into the current
results.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

Exporting Review Comments to Other Verification
Results

After you have reviewed verification results, you can export your review
comments for use with other verifications of the same module, allowing you to
avoid reviewing the same check twice.

Caution The comments you export replace any existing comments in the
selected results.

9-41

9 Reviewing Verification Results

9-42

To export review comments to other verification results:

1 Select File > Export checks and comments.
2 Navigate to the folder containing the other results file.
3 Select the results (.RTE) file, then click Open.

The review comments from the current results are exported into the
selected results.

Note If the code has changed between the two verifications, the exported
comments may not be applicable to the other results. For example, the
justification for an orange check may no longer be relevant to the current code.

Importing Review Comments from Previous
Verifications

If you have previously reviewed verification results for a module and saved
your comments, you can import those comments into the current verification,
allowing you to avoid reviewing the same check twice.

Caution The comments you import replace any existing comments in the
current results.

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.
2 Select File > Import checks and comments.

3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Importing and Exporting Review Comments

Once you import checks and comments, the go to next check 4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check b icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

9-43

9 Reviewing Verification Results

9-44

Generating Reports of Verification Results

In this section...

“PolySpace Report Generator Overview” on page 9-44
“Generating Verification Reports” on page 9-45
“Automatically Generating Verification Reports” on page 9-46

“Generating Excel Reports” on page 9-47

PolySpace Report Generator Overview

The PolySpace Report Generator allows you to generate reports about your
verification results, using predefined report templates.

The PolySpace Report Generator provides the following report templates:

Coding Rules Report — Provides information about compliance with
MISRA-C Coding Rules, as well as PolySpace configuration settings for
the verification.

Developer Report — Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
PolySpace configuration settings for the verification.

Developer with Green Checks Report — Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

Quality Report — Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and PolySpace configuration settings for
the verification.

The PolySpace Report Generator allows you to generate verification reports in
the following formats:

HTML
PDF
RTF

Generating Reports of Verification Results

e Microsoft® Word
e XML

Note Microsoft Word is not available on UNIX platforms. RTF format is
used instead.

Generating Verification Reports
You can generate reports for any verification results using the PolySpace
Report Generator.

To generate a verification report:

1 In the Viewer, open your verification results.
2 Select Reports > Run Report.

The Run Report dialog box opens.

9-45

9 Reviewing Verification Results

9-46

x

—Select Report Template

C:\PolySpace\PolySpace_Common'\ReportGenerator templates\CodingRules. rpt
:\PolySpace\PalySpace_Common'R.eportGenerator\templatesDeveloper. rpt
Ci\PolySpace\PolySpace_Common'\ReportGeneratoritemplates \Developer_WithGreenChecks.rpt
C:\PolySpace'\PolySpace_Common'\ReportGenerator templates\Quality.rpt

Erowse... |

—Select Report Format
Qutput folder IC:'IFIZI|'§.|'5|:IE|IZEWEWJJFD]EEt'I,I’ESUltS'IFl:ll'}.l'SpalZE-DIZIC |
Qutput format |POF -

Fun Report | Cancel

3 In the Select Report Template section, select the type of report that you
want to run.

4 Select the Output folder in which to save the report.
5 Select the Output format for the report.
6 Click Run Report.

The software creates the specified report.

Automatically Generating Verification Reports

You can specify that PolySpace software automatically generate reports for
each verification using an option in the Launcher .

To automatically generate reports for each verification:

1 In the Launcher, open your project.

Generating Reports of Verification Results

2 In the Analysis options section of the Launcher window, expand General.

You see the General options.
3 Select Report Generation.
4 Select the Report template name.
5 Select the Output format for the report.

6 Save your project.

Generating Excel Reports
You can generate a Microsoft Excel® report of the verification results.

Note Excel reports do not use the PolySpace Report Generator.

To generate an Excel report of your verification results:

1 In your results directory, navigate to the PolySpace-Doc folder. For
example:polypace_project\results\PolySpace-Doc.

The directory should have the following files:

Example_Project_Call_Tree.txt
Example_Project_RTE_View.txt
Example_Project_Variable_View.txt

Example Project-NON-SCALAR-TABLE-APPENDIX.ps
PolySpace_Macros.xl1s

The first three files correspond to the call tree, RTE, and variable views
in the PolySpace Viewer window.

2 Open the macros file PolySpace Macros.xls.
You see a security warning dialog box.

3 Click Enable Macros.

9-47

9 Reviewing Verification Results

A spreadsheet opens. The top part of the spreadsheet looks like the
following figure.

Apply filters? ——————— Generate checks by file?
= Mo filters = yes
" Beta filters “ no

Help | Use this button to create the complete synthesis in one file Help

Select the RTE export view and a file in which to save results
If the other views are in the same directory as the RTE view
then they will automatically be incorporated into the same file

iGenerate PolySpace Rasults Synthesis |

4 Specify the report options that you want, then click Generate PolySpace
Results Synthesis.

The synthesis report combines the RTE, call tree, and variables views into
one report.

The Where is the PolySpace RTE View text file dialog box opens.

5 In Look in, navigate to the PolySpace-Doc folder in your results directory.
For example:polypace_project\results\PolySpace-Doc.

6 Select Project RTE View.txt.
7 Click Open to close the dialog box.
The Where should I save the analysis file? dialog box opens.
8 Keep the default file name and file type.
9 Click Save to close the dialog box and start the report generation.

Microsoft Excel opens with the spreadsheet that you generated. This
spreadsheet has several worksheets.

9-48

Generating Reports of Verification Results

Microsoft Excel - Training_Project-Synthesis.xls

@J File Edit Wew Insert Format Tools Data Window Help Adol
A

1 |Procedural entities

2 |Training Froject

3 || -Textern

4 || | -—acos

5] | | ¥ UNP.O

B || | —-acosh

T || | | X UNE.O

d || | -—-a=in

9 0 | | X UHF.O

10||] | -—-a=inh

1] | | X UNEP.O

12| | -—-atan?

13/ | | X UHP.O

14| | -atanh

1511 | | X UHP.QO

16| | -co=

171 | | X UNHFR.O

18| | —-co=h

191 | | X UNP.O

200 | -e=p

211 | | X UHF.0

2211 | -log

23] | | X UHF.O

24| | -pow

25| | | X UHF.O

26| | -=imn

27 | | X UHMF.D0

28] | -—-=inh

29/ | | X UHF.D0

bl | -=sgrt

M 4 F H[\RTE Checks Sheet 1/ Launching Options 4 Check Synthesis @

9-49

9 Reviewing Verification Results

10 Select the Check Synthesis tab to view the worksheet showing statistics
by check category.

@J File Edit Wew Insert Format Tools Data Window Help
A | B ICIDIE|F

1 RTE Statistics

2 | Check category Check detail RIO|Gy|G

3 |OBA Out of Bounds Array Index 00 |0

4 [MIVL Uninitialized Local Yariahle oo (0

5 |IDP llegal Dereference of Pointer |1 2 0 |©

B |MIP Uninitialized Pointer o0 (0 |12

T MW Uninitialized Variable 0(3 (0 |C

8 |IRV Initialized Value Returmed 00 (0 |C

§ [COR Other Correctness Conditions (0 0 0 2

10 |ASET User Assertion Failure D0 |0 |

11 [POVY Fower Must Be Positive oo (0

12 |20V Division by Zero 011 10

13 [SHF Shift Amount Within Bounds oo (0

14 |OVFL Cwverflow D3 |0 |4

15 |LINFL Underflow D1 |0 |6

16 (UOWFL Underflow or Overflow 03 (0 |2

17 |[EXCP Arithmetic Exceptions 00 |0 |0

18 |NTC Maon Termination of Call 00 |0

19 [k-MTC konown Man Termination of Call (|0 0 |0

20 |NTL Mon Termination of Loop 00 |0 |C

M 4 » Hr\ RTE Checks Sheet 1 £ Launching Options % Check Synthesis

9-50

Using PolySpace® Results

Using PolySpace Results

In this section...

“Review Runtime Errors: Fix Red Errors” on page 9-51
“Using Range Information in the Viewer” on page 9-52

“Red Checks Where Gray Checks were Expected” on page 9-57
“Potential Side Effect of a Red Error” on page 9-59

“Why Review Dead Code Checks” on page 9-60

“Reviewing Orange Checks” on page 9-62

“Integration Bug Tracking” on page 9-62

Review Runtime Errors: Fix Red Errors

All Runtime Errors highlighted by PolySpace verification are determined
by reference to the language standard, and are sometimes implementation
dependant — that is, they may be acceptable for a particular compiler but
unacceptable according to the language standard.

Consider an overflow on a type restricted from -128 to 127. The computation
of 127+1 cannot be 128, but depending on the environment a “wrap around”
might be performed to give a result of -128.

This result is mathematically incorrect, and could have serious consequences
if, for example, the computation represents the altitude of a plane.

By default, PolySpace verification does not make assumptions about the way
you use a variable. Any deviation from the recommendations of the language
standard is treated as a red error, and must therefore be corrected.

PolySpace verification identifies two kinds of red checks:
® Red errors which are compiler-dependant in a specific way. A PolySpace
option may be used to allow particular compiler specific behavior. An

example of a PolySpace option to permit compiler specific behavior is
the option to force “IN/OUT” ADA function parameters to be initialized.

9-51

9 Reviewing Verification Results

9-52

Examples in C include options to deal with constant overflows, shift
operation on negative values, and so on.

® You must fix all other red errors. They are bugs.
Most of the bugs you find are easy to correct once the software identifies

them. PolySpace verification identifies bugs regardless of their consequence,
or how difficult they may be to correct.

Using Range Information in the Viewer

¢ “Viewing Range Information” on page 9-52
e “Interpreting Range Information” on page 9-52

¢ “Diagnosing Errors with Range Information” on page 9-54

Viewing Range Information

You can see range information associated with variables and operators within
the source code view. Place the cursor over an operator or variable. A tooltip
message displays the range information, if it is available.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

If a line of code is entirely the same color, selecting (clicking) the line opens the
Expanded Source Code window. Place your cursor over the required operator
or variable in this window to view range information. In addition, you can
select the line in the Expanded Source Code window to display error or
warning messages (along with range information) in the selected check view.

In the source code view, if a line of code contains different colored checks, then
selecting a check displays the error or warning message along with range
information in the selected check view.

Interpreting Range Information
The software uses the following syntax display range information of variables:

Using PolySpace® Results

name (data_type) : [min1 .. max1] or [min2 .. max2] or [min3 .. max3] or exact value

In the following example,

30 [
3l int temp:

32 PowgqrLewvel = -10000;

33 variable 'PowerLevel (int 32): -10000
34 ETE L

35

the tooltip message indicates the variable PowerLevel is a 32-bit integer
with the value —10000.

In the next example,

140
141 *depth = #*depth + 1:
14z ad{%nce = l.0f/(float) (*depth); /% potential division by =ero */

143

144 variable 'advance’ (float 32): [-1.0001 .. -4.6565E 1% or [1.9999E2 ., 3.3334EY

the tooltip message indicates that the variable advance is a 32-bit float that
lies between either —1.0001 and —4.6566E-10 or 1.9999E-2 and 3.3334E-1

The tooltip message also indicates whether the variable occupies the full
range:

37

38 temp = read on, bus();
39 gwitch(ten
a0 :_p] returned value of read_on_bus (int 32): fullrange [-23‘1 . 231-1]

The tooltip message indicates that the returned value of the function
read_on_bus is a 32-bit integer that that occupies the full range of the data
type, -2147483648 to 2147483647.

With operators, the software displays associated information. Consider the
following example:

9-53

9 Reviewing Verification Results

9-54

50
51
52
53
54
55
56
37

atatic 332 new

{

atatic char re

{

9 + [((=32)ex_speed + (232)c_speed) /2):

operator / on type int 32
left: [-1701.. 3278]
right: 9

result; [-189 .. 3564]

f73)

The tooltip message for the division operator / indicates that the :

e Operation is performed on 32-bit integers

® Divisor (right) is an exact value, 9

Quotient (result) lies between —189 and 364

Dividend (1left) is a value between —1701 and 3276

Note You can run a passO (Software Safety Analysis level 0)

verification to produce results quickly. See “-from verification-phase” and “-to
verification-phase” in the PolySpace Products for C++ Reference Guide.
However, with a passO verification, the software generates range information

that is either a constant or full-range for the data type of the expression.

Diagnosing Errors with Range Information

You can use range information to diagnose errors. Consider the function
table_loop() in the following example:

Using PolySpace® Results

olySpace Viewer - C:\CC-R2009b-V1\Examples\Demo_Cpp\RTE_px_02 Demo_Cpp LAST RESULTS.rte
File Edit Reports Windows Help

J@.| 3 - [oﬂm .@ i .J.Q‘-n-snRJ-§-E1T£Jm-(§3m|mm|

J.‘.x.?.\/."ggc.{ SLAL

NI HIU FLOAT
- oAl Zow o (MIN . GhEr - SMF . BNT - IDP - GPP - GOR - FRY - dpo NP OOP - EXC - gup ASRT - NTC - NTL - UNR - INF - WOR

Coding review progress Count|Pr... : Mo check currently selected
Mo check selected nfa nfa
num reviewed / num to review (n/fa) nfa nfa
||software reliability indicator nfa nfa r @I
[[reiome T1x[[T[] o
|z Deme_cer 2| e ||z 7 Noresd | Nowrite | W
H--exception.stdh 1 0 fexoep
T & |07 1 6 |main. o o
1 0 |main.c Written by] [
7| s | 4 |100main.c
H 3 it
g |42 44 | 11 | &3 |main.c by o 2 1t
TE|ET 17 |12 | 88 |main.c [Written by task o 3 13t
+ 17 functi f 2
) IRead by task
ng? 7 functi 1 1
nd® z |8 rray — ||Potentially Written by 2 3 it
ond? 2 s larray = - 1 1
g 2z s farray
nd? 2 |8 farray
nd z |2 feall to 4] | LI
ond? 2 |2 lesll to
g 22 |38 feal to
nd® 2z | feall to
o E 22 47| |ealito 14
o 22 |47 leall to 15 FELIRSSIESIES SIS ETSE SIS ISR TSRS FES RIS RS S TSR F I ifEif)
g] leall to 16
e 2z feall to 17 static bool table loop(veid)
ond? 4 |18 local v 18 {)
e 24 (18] fooain 12 int J - &
nd? 24 |z local v 20
z1 /f Table of basic element
T 24 |22 scalar
2z Base *array[] = { nev 3inalogic, new Sensor, new Sensor, nev Sinalogic }:
_— M |2 lscalar 23 — — — — —
g 2 |27 local « 24 for [int i=4; i> 05 i--, 3--
g O 24 |28 scalar 25 i
ol] m’l"'v 26 array[i-1]->Draw();
. 3 1 . . 11 zrranr
4 | | b 27

EXC.7 Details: call to SAnalogic does not throw

There is one red check in the Procedural entities view:

9-55

9 Reviewing Verification Results

Procedural entities i|x ~| Line [..]| 2 :
o EXC.E3 EN T
cndf DOF .5 1 (= this-pc
1 |8 WVarnii
g EXC.ES T 18 ieall to
s 7 18] |hispe

x iz |3 Unrez
‘f 8 9 [Error
e 2 10| fossls
g O 3 10| fecslar
- UNFL % |10 soalar

Clicking the red check, OBAI.62 in the Procedural entities view or [on line
38 in the source code view, displays an error message and range information
in the selected check view:

1 main.cpp [table_loop() {line 38 / column 9
H

array[j-1]->Draw():
- &

Error : array index is outside its bounds : [0..3]
array 3ize: [0..3]
array index: -1

Unreachable check : non initialized pointer Error

The error message shows that the array size lies between zero and three
elements, but the array index is negative, with a value of —1.

Placing the cursor over the subtraction operator -in the source code view
shows the following:

36 A/ Error: array index iz outside its bounds
37 if (u.random inti))

38 array[j—!]l]—>Drawi] H

33 — operator - on type int 32

40 FEtUrn] |eft 0

41 1 right: 1

a4z result: -1

43

The operands are 0 and 1 respectively, which gives a negative result.

Placing the cursor over j reveals the reason for the negative index:

9-56

Using PolySpace® Results

1 f#4 Error: array index iz outside its bounds
37 if (u.random inti])

38 array[]1-1]->Draw(]:

33 %j variable ' {int 32): 0 |

40 return ftroor

41 1

42

j has the value 0.

Red Checks Where Gray Checks were Expected

By default, PolySpace continues verification when it finds a red error. This
is used to deal with two primary circumstances:

® A red error appears in code which was expected to be dead code.

® A red error appears which was expected, but the verification is required
to continue.

PolySpace performs an upper approximation of variables. Consequently, it
may be true that PolySpace verifies a particular branch of code as though
it was accessible, despite the fact that it could never be reached during
“real life” execution. In the example below, there is an attempt to compare
elements in an array, and PolySpace is not able to conclude that the branch
was unreachable. PolySpace may conclude that an error is present in a line
of code, even when that code cannot be reached.

Consider the figure below.

9-57

9 Reviewing Verification Results

9-58

As a result of imprecision, each color shown can be approximated by a color
immediately above it in the grid. It is clear that green or red checks can be
approximated by orange ones, but the approximation of gray checks is less

obvious.

During PolySpace verification, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Gray code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

* by an empty superset;

* by a nonempty super set, members of which may generate checks of any

color.

And hence PolySpace cannot be guaranteed to find all dead code in a
verification.

However, there is no problem in having gray checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example:

if (condition) then action_producing_a_red;

Using PolySpace® Results

After the "if" statement, the only way execution can continue is if the condition
1s false; otherwise a red check would be produced. Therefore, after this
branch the condition is always false. For that reason, the code verification
continues, even with a specific error. Remember that this propagates values
throughout your application. None of the execution paths leading to a
run-time error will continue after the error and if the red check is a real
problem rather than an approximation of a gray check, then the verification
will not be representative of how the code will behave when the red error
has been addressed.

It is applicable on the current example:

1 int a[] = { 1,2,3,4,5,7,8,9,10 };

2 void main(void)

3 {

4 int x=0;

5 int tmp;

6 if (a[5] > a[6])

7 +tmp =1 /x; // RED ERROR [scalar division by zero] in gray code
8}

Potential Side Effect of a Red Error

This section explains why when a red error has been found the verification
continues but some cautions need to be taken. Consider this piece of code:

int *global_ptr; void other_function(void)
int variable_ it points_to;
{

void big_red(void)

{ if (condition==1)
int r;
int my_zero = 0; *global ptr = 12;
if (condition==1)

r=1/ my_zero; // red ZDV }

// hundreds of lines

9-59

9 Reviewing Verification Results

global_ptr = &variable_it_points_to;
other_function();

}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for verification,
and the propagation of the data ranges need several iterations (or integration
levels) to complete. That effect can be observed by examining the color of the
checks on completion of each of those levels. It can sometimes happen that:

¢ PolySpace will detect gray code which exists due to a terminal RTE which
will not be flagged in red until a subsequent integration level.

¢ PolySpace flags a NTC in red with the content in gray. This red NTC is
the result of an imprecision, and should be gray.

Suppose that an NTC is hard to understand at given integration level (level 4):

e If other red checks exist at level 4, fix them and restart the verification

¢ Otherwise, look back through the results from each previous level to see
whether other red errors can be located. If so, fix them and restart the
verification

Why Review Dead Code Checks

® “Functional Bugs in Gray Code” on page 9-60

e “Structural Coverage” on page 9-62

Functional Bugs in Gray Code

PolySpace verification finds different types of dead code. Common examples
include:

e Defensive code which is never reached

¢ Dead code due to a particular configuration

9-60

Using PolySpace® Results

e Libraries which are not used to their full extent in a particular context
® Dead code resulting from bugs in the source code.

The causes of dead code listed in the following examples are taken from
critical applications of embedded software by PolySpace verification.

® A lack of parenthesis and operand priorities in the testing clause can
change the meaning significantly.

® Consider a line of code such as:
IF NOT a AND b OR ¢ AND d

Now consider how misplaced parentheses might influence how that line
behaves:

IF NOT (a AND b OR c AND d)
IF (NOT (a) AND b) OR (c AND d))
IF NOT (a AND (b OR c) AND d)
® The test of variable inside a branch where the conditions are never met

® An unreachable “else” clause where the wrong variable is tested in the
“if” statement

® A variable that should be local to the file but instead is local to the function
* Wrong variable prototyping leading to a comparison which is always false

(say)

As 1s the case for red errors, the consequences of dead code and how much
time you must spend on it is unpredictable. For example, it can be:

* A one-week effort of functional testing on target, trying to build a scenario
going into that branch.

® A three-minute code review discovering the bug.
Again, as for red errors, PolySpace does not measure the impact of dead code.
The tool provides a list of dead code. A short code review enables you to place

each entry from that list into one of the five categories from the beginning of
this chapter. Doing so identifies known dead code and uncovers real bugs.

9-61

9 Reviewing Verification Results

9-62

Using PolySpace shows that at least 30% of gray code reveals real
bugs.

Structural Coverage

PolySpace software always performs upper approximations of all possible
executions. Therefore, if a line of code is shown in green, there is a possibility
that it is a dead portion of code. Because PolySpace verification made an
upper approximation, it does not conclude that the code is dead, but it could
conclude that no run-time error is found.

PolySpace verification finds around 80% of dead code that the developer finds
by doing structural coverage.

Use PolySpace verification as a productivity aid in dead code detection. It
detects dead code which might take days of effort to find by any other means.

Reviewing Orange Checks

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

The number of orange checks you review is determined by several factors,
including:

¢ The stage of the development process

® Your quality objectives

There are also actions you can take to reduce the number of orange checks
in your results.

For information on managing orange checks in your results, see Chapter 10,
“Managing Orange Checks”.

Integration Bug Tracking

By default, you can achieve integration bug tracking by applying the
selective orange methodology to integrated code. Each error category reveals
integration bugs, depending on the coding rules that you choose for the project.

Using PolySpace® Results

For instance, consider a function that receives two unbounded integers. The
presence of an overflow can be checked only at integration phase because at
unit phase the first mathematical operation reveals an orange check.

Consider these two circumstances:

® When you carry out integration bug tracking in isolation, a selective
orange review highlights most integration bugs. A PolySpace verification is
performed integrating tasks.

® When you carry out integration bug tracking together with an exhaustive
orange review at unit phase, a PolySpace verification is performed on one
or more files.

In this second case, an exhaustive orange review already has been performed,
file by file. Therefore, at integration phase, assess only checks that have
turned from green to another color .

For instance, if a function takes a structure as an input parameter, the
standard hypothesis made at unit level is that the structure is well initialized.
This consequentially displays a green NIV check at the first read access to

a field. But this might not be true at integration time, where this check can
turn orange if any context does not initialize these fields.

These orange checks reveal integration bugs.

9-63

9 Reviewing Verification Results

9-64

Managing Orange Checks

¢ “Understanding Orange Checks” on page 10-2

® “Too Many Orange Checks?” on page 10-9

¢ “Reducing Orange Checks in Your Results” on page 10-11
¢ “Reviewing Orange Checks” on page 10-24

1 0 Managing Orange Checks

10-2

Understanding Orange Checks

In this section...
“What is an Orange Check?” on page 10-2

“Sources of Orange Checks” on page 10-6

What is an Orange Check?

Orange checks indicate unproven code. This means that the code can neither
be proven safe, nor can it be proven to contain a runtime error.

PolySpace verification does not try to find bugs, it attempts to prove the
absence or existence of run time errors. Therefore, all code starts out as
unproven prior to verification. The verification then attempts to prove that
the code is either correct (green), is certain to fail (red), or is unreachable
(gray). Any remaining code stays unproven (orange).

Code often remains unproven in situations where some paths fail while others
succeed. For example, consider the following instruction:

X =1/ (X-Y);
Does a division-by-zero error occur?
The answer clearly depends on the values of X and Y. However, there are an

almost infinite number of possible values. Creating test cases for all possible
values is not practical.

Understanding Orange Checks

X =Y (Division by zero error)

x-+—— Actual states of operation
X X X/ (X-Y)
X (nearly infinite)

Although it is not possible to test every value for each variable, the target
computer and programming language provide limits on the possible values of
the variables. PolySpace verification uses these limits to compute a cloud of

points (upper-bounded convex polyhedron) that contains all possible states
for the variables.

Y% Convex polyhedron
containing all possible
states of

X/ (X-Y)

10-3

1 0 Managing Orange Checks

PolySpace verification than compares the data set represented by this
polyhedron to the error zone. If the two data sets intersect, the check is
orange.

Intersection means

X =Y (Division by zero error)

*— Operation: X/ (X-Y)

X

Graphical Representation of an Orange Check

10-4

Understanding Orange Checks

A true orange check represents a situation where some paths fail while
others succeed. However, because the data set used in the verification is an
approximation of actual values, an orange check may actually represent a
check of any other color, as shown below.

Y

Y

Red approximated by orange Gray approximated by orange

-
-

-
o

Green approximated by orange Any other situation (true orange)

PolySpace reports an orange check any time the two data sets intersect,
regardless of the actual values. Therefore, you may find orange checks that
represent bugs, while other orange checks represent code that is safe.

You can resolve some of these orange checks by increasing the precision of

your verification, or by adding execution context, but often you must review
the results to determine the source of an orange check.

10-5

1 0 Managing Orange Checks

Sources of Orange Checks

Orange checks can be caused by any of the following:

Potential bug

Inconclusive check

Data set issue

® Basic imprecision

Bugs can be revealed by any of these categories except for basic imprecision.

Potential Bug

An orange check can reveal code which will fail under some circumstances.
These types of orange checks often represent real bugs.

For example, consider a function Recursion():

® Recursion() takes a parameter, increments it, then divides by it.
® This sequence of actions loops through an indirect recursive call to
Recursion_recurse().

If the initial value passed to Recursion() is negative, then the recursive
loop will at some point attempt a division by zero. Therefore, the division
operation causes an orange ZDV.

Inconclusive Verification

An orange check can be caused by situations in which the verification is
unable to conclude whether a problem exists.

In some code, it is impossible to conclude whether an error exists without
additional information.

For example, consider a variable X, and two concurrent tasks T1 and T2.

e X is initialized to 0.

® T1 assigns the value 12 to X.

10-6

Understanding Orange Checks

e T2 divides a local variable by X.

® A division by zero error is possible because T1 can be started before or after
T2, so the division causes an orange ZDV.

The verification cannot determine if an error will occur unless you define
the call sequence.

Most inconclusive orange checks take some time to investigate. An
inconclusive orange check often results from complex code structure.
Sometimes, such situations take an hour or more to understand. You may
want to recode to ensure there is no risk, depending on the criticality of the
function and the required speed of execution.

Data Set Issue

An orange check can result from a theoretical set of data that cannot actually
occur.

PolySpace verification uses an upper approximation of the data set, meaning
that it considers all combinations of input data rather than any particular
combination. Therefore, an orange check may result from a combination of
input values that is not possible at execution time.

For example, consider three variables X, Y, and Z:

e Each of these variables is defined as being between 1 and 1,000.

® The code computes X*Y*Z on a 16-bit data type.

® The result can potentially overflow, so it causes an orange OVFL.

When developing the code, you may know that the three variables cannot all

take the value 1,000 at the same time, but this information is not available to
the verification. Therefore, the multiplication is orange.

When an orange check is caused by a data set issue, it is usually possible
to identify the cause quickly. After identifying a data set issue, you may
want to comment the code to flag the warning, or modify the code to take
the constraints into account.

10-7

1 0 Managing Orange Checks

10-8

Basic Imprecision

An orange check can be caused by imprecise approximation of the data set
used for verification.

For example, consider a variable X:

e Before the function call, X is defined as having the following values:
-5, -3, 8, or any value in range [10...20].
This means that 0 has been excluded from the set of possible values for X.

e However, due to optimization at low precision levels (-00), the verification
approximates X in the range [-5...20], instead of the previous set of
values.

® Therefore, calling the function x = 1/x causes an orange ZDV.

PolySpace verification is unable to prove the absence of a run-time error in
this case.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
verification cannot help directly. You need to review the code to determine if
there is an actual problem.

For more information, see “Sources of Orange Checks” on page 10-6and
“Approximations Used During Verification”in the PolySpace Products for
C++ Reference.

Too Many Orange Checks?

Too Many Orange Checks?

In this section...

“Do I Have Too Many Orange Checks?” on page 10-9
“How to Manage Orange Checks” on page 10-10

Do | Have Too Many Orange Checks?

If the goal of code verification is to prove the absence of run time errors, you
may be concerned by the number of orange checks (unproven code) in your
results.

In reality, asking “Do I have too many orange checks?” is not the right
question. There is not an ideal number of orange checks that applies for
all applications, not even zero. Whether you have too many orange checks
depends on:

¢ Development Stage — Early in the development cycle, when verifying
the first version of a software component, a developer may want to focus
exclusively on finding red errors, and not consider orange checks. As
development of the same component progresses, however, the developer
may want to focus more on orange checks.

¢ Application Requirements — There are actions you can take during
coding to produce more provable code. However, writing provable code
often involves compromises with code size, code speed, and portability.
Depending on the requirements of your application, you may decide to
optimize code size, for example, at the expense of more orange checks.

® Quality Goals — PolySpace software can help you meet quality goals,
but it cannot define those goals for you. Before you verify code, you must
define quality goals for your application. These goals should be based on
the criticality of the application, as well as time and cost constraints.

It is these factors that ultimately determine how many orange checks are
acceptable in your results, and what you should do with the orange checks

that remain.

Thus, a more appropriate question is “How do I manage orange checks?”

10-9

1 0 Managing Orange Checks

10-10

This question leads to two main activities:

¢ Reducing the number of orange checks

® Working with orange checks

How to Manage Orange Checks

PolySpace verification cannot magically produce quality code at the end of
the development process. Verification is a tool that helps you measure the
quality of your code, identify issues, and ultimately achieve the quality goals
you define. To do this, however, you must integrate PolySpace verification
into your development process.

Similarly, you cannot successfully manage orange checks simply by using
PolySpace options. To manage orange checks effectively, you must take
actions while coding, when setting up your verification project, and while
reviewing verification results.

To successfully manage orange checks, perform each of the following steps:

1 Define your quality objectives to set overall goals for application quality.
See “Defining Quality Objectives” on page 2-5.

2 Set PolySpace analysis options to match your quality objectives. See
“Specifying Options to Match Your Quality Objectives” on page 4-18.

3 Define a process to reduce orange checks. See “Reducing Orange Checks in
Your Results” on page 10-11.

4 Apply the process to work with remaining orange checks. See “Reviewing
Orange Checks” on page 10-24.

Reducing Orange Checks in Your Results

Reducing Orange Checks in Your Results

In this section...

“Overview: Reducing Orange Checks” on page 10-11

“Applying Coding Rules to Reduce Orange Checks” on page 10-12
“Improving Verification Precision” on page 10-12

“Stubbing Parts of the Code Manually” on page 10-19
“Considering Contextual Verification” on page 10-22

“Considering the Effects of Application Code Size” on page 10-23

Overview: Reducing Orange Checks

There are several actions you can take to reduce the number of orange checks
in your results.

However, it is important to understand that while some actions increase
the quality of your code, others simply change the number of orange checks
reported by the verification, without improving code quality.

Actions that reduce orange checks and improve the quality of your code:

* Apply coding rules — Coding rules are the most efficient means to reduce
oranges, and can also improve the quality of your code.

Actions that reduce orange checks through increased verification precision:

® Set precision options — There are several PolySpace options that
can increase the precision of your verification, at the cost of increased
verification time.

¢ Implement manual stubbing — Manual stubs that accurately emulate
the behavior of missing functions can increase the precision of the
verification.

Options that reduce orange checks but do not improve code quality or the
precision of the verification:

10-11

1 0 Managing Orange Checks

10-12

¢ Create empty stubs — Providing empty stubs for missing functions can
reduce the number of orange checks in your results, but does not improve
the quality of the code.

¢ Constrain data ranges — You can use data range specifications (DRS)
to limit the scope of a verification to specific variable ranges, instead of
considering all possible values. This reduces the number of orange checks,
but does not improve the quality of the code. Therefore, DRS should be
used specifically to perform contextual verification, not simply to reduce
orange checks.

Each of these actions have trade-offs, either in development time, verification
time, or the risk of errors. Therefore, before taking any of these actions, it is
important to define your quality objectives, as described in “Defining Quality
Objectives” on page 2-5.

It is your quality objectives that determine how many orange checks are
acceptable in your results, what actions you should take to reduce the number
of orange checks, and what you should do with any orange checks that remain.

Applying Coding Rules to Reduce Orange Checks

The number of orange checks in your results depends strongly on the coding
style used in the project. Applying coding rules can both reduce the number of
orange checks in your verification results, and improve the quality of your
code. Coding rules are the most efficient way to reduce orange checks.

PolySpace software allows you to check JSF++ coding rules during
verification. If your code complies with JSF++ rules, the total number of
orange checks will decrease substantially, and the percentage of orange
checks representing real bugs will increase.

Improving Verification Precision

Improving the precision of a verification can reduce the number of orange
checks in your results, although it does not affect the quality of the code itself.

There are a number of PolySpace options that affect the precision of the
verification. The trade off for this improved precision is increased verification
time.

Reducing Orange Checks in Your Results

The following sections describe how to improve the precision of your
verification:

e “Balancing Precision and Verification Time” on page 10-13
® “Setting the Analysis Precision Level” on page 10-14

® “Setting Software Safety Analysis Level” on page 10-16

¢ “Other Options that Can Improve Precision” on page 10-17

Balancing Precision and Verification Time

When performing code verification, you must find the right balance between
precision and verification time. Consider the two following extremes:

e [f a verification runs in one minute but contains only orange checks, the
verification is not useful because each check must be reviewed manually.

e [f a verification contains no orange checks (only gray, red, and green), but
takes six months to run, the verification is not useful because of the time
spent waiting for the results.

Higher precision yields more proven code (red, green, and gray), but takes
longer to complete. The goal is therefore to get the most precise results in
the time available. Factors that influence this compromise include the time
available for verification, the time available to review results, and the stage
in the development cycle.

For example, consider the following scenarios:

¢ Unit testing — Before going to lunch, a developer starts a verification.
After returning from lunch the developer will review verification results
for one hour.

¢ Integration testing — Before going home, a developer starts a verification.
The developer will spend the next morning reviewing verification results.

¢ Validation testing — Before leaving the office on Friday evening, a
developer starts a verification. The developer will spend the following week
reviewing verification results.

10-13

1 0 Managing Orange Checks

10-14

Each of these scenarios require the developer to use PolySpace software
in different ways. Generally, the first verification should use the lowest
precision mode, while subsequent verifications increase the precision level.

Note It is possible that a verification never ends. In this case, you may need
to split the application.

Setting the Analysis Precision Level

The analysis Precision Level specifies the mathematical algorithm used
to compute the cloud of points (polyhedron) containing all possible states
for the variables.

Although changing the precision level does not affect the quality of your code,
orange checks caused by low precision become green when verified with
higher precision.

Reducing Orange Checks in Your Results

Operation: 1 / (x-¥)

Affect of Precision Rate on Orange Checks
To set the precision level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.
2 Select the -00, -01, -02 or -03 precision level the Precision Level

drop-down list.

For more information, see “-O(0-3)”in the PolySpace Products for C++
Reference.

Note You can select specific precision levels for individual modules in the

verification.

10-15

10

Managing Orange Checks

Setting Software Safety Analysis Level

The Software Safety Analysis level of your verification specifies how many
times the abstract interpretation algorithm passes through your code. The
deeper the verification goes, the more precise it is.

There are 5 Software Safety Analysis levels (pass0 to pass4). By default,
verification proceeds to pass4, although it can go further if required. Each
iteration results in a deeper level of propagation of calling and called context.

To set the Software Safety Analysis level:

1 In the Analysis options section of the Launcher window, select
Precision/Scaling > Precision.

2 Select the appropriate level in the To end of drop-down list.

For more information, see “-to verification-phase”in the PolySpace Products

for C++ Reference.

Note The Software Safety Analysis level applies to the entire application.
You cannot select specific levels for individual modules in the verification.

Example: Orange Checks and Software Safety Analysis Level

The following example shows how orange checks are resolved as verification
proceeds through Software Safety Analysis levels 0 and 1.

Safety Analysis Level O

Safety Analysis Level 1

10-16

#include <stdlib.h>

void ratio (float x, float *y)
{

*y=(abs(x-*y))/(x+*y);

}

void leveli (float x,
float y, float *t)

#include <stdlib.h>

void ratio (float x, float *y)
{

*y=(abs(x-*y))/(x+*y);

}

void leveli (float x,
float y, float *t)

Reducing Orange Checks in Your Results

Safety Analysis Level O

Safety Analysis Level 1

{ float v;

V=9,

ratio (x, &y);

*t 1.0/(v - 2.0 * Xx);
}

float level2(float v)
{

float t;

t = v;

level1 (0.0, 1.0, &t);
return t;

}

void main(void)

{

float r,d;

d= level2(1.0);

r 1.0 (2.0 d);
}

{ float v;

V=9,

ratio (x, &y);

*t =1.0/(v - 2.0 * Xx);
}

float level2(float v)
{

float t;

t = v;

leveli1 (0.0, 1.0, &t);
return t;

}

void main(void)

{

float r,d;

d= level2(1.0);
r=1.0/ (2.0 - d);
}

In this example, division by an input parameter of a function produces an
orange during Level 0 verification, but turns to green during level 1. The

verification gains more accurate knowledge of x as the value is propagated
deeper.

Other Options that Can Improve Precision
The following options can also improve verification precision:

¢ “Improve precision of interprocedural analysis” on page 10-18
® “Sensitivity context” on page 10-18

¢ “Inline” on page 10-18

10-17

1 0 Managing Orange Checks

10-18

Note Changing these options does not affect the quality of the code itself.
Improved precision can reduce the number of orange checks, but will increase
verification time.

Improve precision of interprocedural analysis. This option causes the
verification to propagate information within procedures earlier than usual.
This improves the precision within each Software Safety Analysis level,
meaning that some orange checks are resolved in level 1 instead of later levels.

However, using this option increases verification time exponentially. In some
cases this could cause a level 1 verification to take longer than a level 4
verification.

For more information, see “-path-sensitivity-delta number”in the PolySpace
Products for C++ Reference.

Sensitivity context. This option splits each check within a procedure into
sub-checks, depending on the context of a call. This improves precision for
discrete calls to the procedure. For example, if a check is red for one call to
the procedure and green for another, both colors will be revealed.

For more information, see “-context-sensitivity "procl[,proc2[,...]]"’in the
PolySpace Products for C++ Reference.

Inline. This option creates clones of a each specified procedure for each call
to it. This reduces the number of aliases in a procedure, and can improve
precision in some situations.

However, using this option can duplicate large amounts of code, leading to
increased verification time and other scaling problems.

For more information, see “-inline "procl[,proc2[,...]]"”’in the PolySpace
Products for C++ Reference.

Reducing Orange Checks in Your Results

Stubbing Parts of the Code Manually

Manually stubbing parts of your code can reduce the number of orange checks
in your results. However, manual stubbing generally does not improve the
quality of your code, it only changes the results.

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

If a function is supposed to return an integer, the default automatic stubbing
will stub it on the assumption that it can potentially take any value from the
full type of an integer.

The following sections describe how to reduce orange checks using manual
stubbing:

e “Manual vs. Automatic Stubbing” on page 10-19
¢ “Emulating Function Behavior with Manual Stubs” on page 10-20
¢ “Reducing Orange Checks with Empty Stubs” on page 10-21

Manual vs. Automatic Stubbing
There are two types of stubs in PolySpace verification:

* Automatic stubs — The software automatically creates stubs for unknown
functions based on the function’s prototype (the function declaration).
Automatic stubs do not provide insight into the behavior of the function,
but are very conservative, ensuring that the function does not cause any
runtime errors.

® Manual stubs — You create these stub functions to emulate the behavior
of the missing functions, and manually include them in the verification
with the rest of the source code. Manual stubs can better emulate missing
functions, or they can be empty.

By default, PolySpace software automatically stubs functions. However,

because automatic stubs are conservative, they can lead to more orange
checks in your results.

10-19

1 0 Managing Orange Checks

10-20

Stubbing Example

The following example shows the effect of automatic stubbing.

void main(void)

a

b=0;
a_missing_function(&a, b);
b 1

Due to automatic stubbing, the verification assumes that a can be any integer,
including 0. This produces an orange check on the division.

If you provide an empty manual stub for the function, the division would be
green. This reduces the number of orange checks in the result, but does not
improve the quality of the code itself. The function could still potentially
cause an error.

However, if you provide a detailed manual stub that accurately emulates the
behavior of the function, the division could be any color, including red.

Emulating Function Behavior with Manual Stubs

You can improve both the speed and selectivity of your verification by
providing manual stubs that accurately emulate the behavior of missing
functions. The trade-off is time spent writing the stubs.

Manual stubs do not need to model the details of the functions or procedures
involved. They only need to represent the effect that the code might have on
the remainder of the system.

Example

This example shows a header for a missing function (which may occur when
the verified code is an incomplete subset of a project).

int a,b;

int *ptr;
void a_missing_function(int *dest, int src);

Reducing Orange Checks in Your Results

/* should copy src into dest */
void main(void)

{
a=1;
b = 0;
a_missing_function(&a, b);
b =1 a;

}

The missing function copies the value of the src parameter to dest, so there
is a division by zero error.

However, automatic stubbing always shows an orange check, because a is
assumed to have any value in the full integer range. Only an accurate manual
stub can reveal the true red error.

Using manual stubs to accurately model constraints in primitives and outside

functions propagates more precision throughout the application, resulting in
fewer orange checks.

Reducing Orange Checks with Empty Stubs

Providing empty manual stubs can reduce the number of orange checks in
your results, but it does not make your code more reliable.

For example, consider the following code:
void write_or_noti1(int *x);

void write_or_not2(int *x);
{ //empty manual stub

}
void orange(void)
{

int x = 12;

int y;

write_or_not1 (&x);
y =y X; //0range ZDV due to automatic stub

10-21

1 0 Managing Orange Checks

10-22

}
void green(void)
{
int x = 12;
int y;

write_or_not2(&x);
y =y / Xx; // Green due to empty stub
}

The code for the two functions is identical, but the automatic stub produces
an orange check, while the empty stub produces a green.

While the empty stub reduces the number of orange checks in your results,
you must take additional steps to ensure the actual function does not result in
a runtime error.

Considering Contextual Verification

By default, PolySpace software performs robustness verification, proving that
the software works under all conditions. Robustness verification assumes that
all data inputs are set to their full range. Therefore, nearly any operation on
these inputs could produce an overflow.

PolySpace software also allows you to perform contextual verification, proving
that the software works under normal working conditions. When performing
contextual verification, you use the data range specifications (DRS) module to
set external constraints on global variables and stub function return values,
and the code is verified within these ranges.

Contextual verification can substantially reduce the number of orange checks
in your verification results, but it does not improve the quality of your code.

Note DRS should be used specifically to perform contextual verification, it is
not simply a means to reduce oranges.

Reducing Orange Checks in Your Results

For more information, see “Applying Data Ranges to External Variables and
Stub Functions (DRS)” on page 5-14.

Considering the Effects of Application Code Size

PolySpace can make approximations when computing the possible values
of the variables, at any point in the program. Such an approximation will
always use a superset of the actual possible values.

For example, in a relatively small application, PolySpace might retain very
detailed information about the data at a particular point in the code, so
that for example the variable VAR can take the values { -2; 1; 2; 10; 15; 16;
17; 25 }. If VAR is used to divide, the division is green (because O is not a
possible value).

If the program being analyzed is large, PolySpace would simplify the internal
data representation by using a less precise approximation, such as [-2; 2] U
{10} U [15; 17] U {25} . Here, the same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
verification, PolySpace might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note the amount of simplification applied to the data representations also
depends on the required precision level (00, O2), PolySpace will adjust the
level of simplification:

® .00: shorter computation time. Focus only red and gray.

e .02: less orange warnings.

® .03: less orange warnings and bigger computation time.

10-23

1 0 Managing Orange Checks

Reviewing Orange Checks

10-24

In this section...

“Overview: Reviewing Orange Checks” on page 10-24

“Defining Your Review Methodology” on page 10-24

“Performing Selective Orange Review” on page 10-26

“Importing Review Comments from Previous Verifications” on page 10-28

“Performing an Exhaustive Orange Review” on page 10-29

Overview: Reviewing Orange Checks

After you define a process that matches your quality objectives, you do not
have too many orange checks. You have the correct number of orange checks
for your quality model.

At this point, the goal is not to eliminate orange checks, it is to work
efficiently with them.

Working efficiently with orange checks involves:

® Defining a review methodology to work consistently with orange checks
® Reviewing orange checks efficiently

® Importing comments to avoid duplicating review effort

Defining Your Review Methodology

Before reviewing verification results, you should configure a methodology for
your project. The methodology defines both the type and number of orange
checks you need to review to meet three criteria levels.

Reviewing Orange Checks

~Mumber of checks to review

Criterion 1 Criterion 2 Criterion 3

—Camman

ZDV 5 20 ALL

MIVL 10 50 ALL

S-OVFL 10 50 ALL

COR 0 10 10

MIY 0 a 10

F-OVFL 5 10 20

ASRT 0 5 20
—C B C++ only

CBAI 10 20 ALL

SHF 5 10 ALL

IDP 0 10 20

MIP 0 10 20
—C only

IRV |5 f20 ALL

Sample Review Methodology

The criteria levels displayed in the methodology represent quality levels you
defined as part of the quality objectives for your project.

Note For information on setting the quality levels for your project, see

Chapter 2.

After you configure a methodology, each developer uses it to review
verification results. This ensures that all users apply the same standards
when reviewing orange checks in each stage of the development cycle.

For more information on defining a methodology, see “Selecting the
Methodology and Criterion Level” on page 9-21.

10-25

1 0 Managing Orange Checks

Performing Selective Orange Review

Once you have defined a methodology for your project, you can use assistant
mode to perform a selective orange review.

The number and type of orange checks you review is determined by your
methodology and the quality level you are trying to achieve. As a project
progresses, the quality level (and number of orange checks to review)
generally increases.

For example, you may perform a level 1 review in the early stages of
development, when trying to improve the quality of freshly written code.
Later, you may perform a level 2 review as part of unit testing.

In general, the goal of a selective orange review is to find the maximum
number of bugs in a short period of time. Many orange checks take only a
few seconds to understand. Therefore, to maximize the number of bugs you
can identify, you should focus on those checks you can understand quickly,
spending no more than 5 minutes on each check. Checks that take longer to
understand are left for later analysis.

To perform a selective orange review:

1 Click the Assistant button in the Viewer to select assistant mode.
The Viewer window toolbar displays the assistant mode controls.

2 Select the methodology for your project from the methodology menu.

Methodology for Model Based Designed;l

Methodaology for Ada
Methodaology for ©
Methodo

Methodology for Model Based Designed

3 Select the appropriate quality level for your review using the level slider.

10-26

Reviewing Orange Checks

4 Navigate through the checks by clicking the forward arrow

5 Perform a quick code review on each orange check, spending no more than
5 minutes on each.

Your goal is to quickly identify whether the orange check is a:
¢ potential bug — code which will fail under some circumstances.

¢ inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

¢ data set issue — a theoretical set of data that cannot actually occur.

See “Sources of Orange Checks” on page 10-6 for more information on each
of these causes.

Note If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand.

6 If you cannot identify a cause within 5 minutes, move on to the next check.

Note Your goal is to find the maximum number of bugs in a short period of
time. Therefore, you want to identify the source of as many orange checks
as possible, while leaving more complex situations for future analysis.

7 Once you understand the cause of an orange check, select the check box to
indicate that you have reviewed the check.

10-27

1 0 Managing Orange Checks

example.c / Recursion line 142 { column 15

+ gdvance = 1.0f/ (float) (*depth); /* potential division by zero */

v @IN&I - depth cannot be negative

operator / on type float 32
lefr: 1.0

ﬂ
+5

right: [-2.147SE ° .. -2.8989] or [-2.0001 .. -9.9999E '] or 0.0 or [2.3999 |

8 Enter a comment for the reviewed check in the text box, indicating the
results of your review.

For example, you can use acronyms to classify the checks being reviewed:
¢ FNO - Bug to be Fixed NOw

* FNR — Bug to be Fixed in Next Release

¢ MQI — Minor Quality Issue.

* RBI — RoBustness Issue

® DFC — DeFensive Code

e NAI — Not An Issue

9 Continue to click the forward arrow until you have reviewed all of the
checks identified by the assistant.

10 Select File > Save checks and comments to save your review comments.

Importing Review Comments from Previous
Verifications

Once you have reviewed verification results for a module and saved your
comments, you can import those comments into subsequent verifications of
the same module, allowing you to avoid reviewing the same check twice.

To import review comments from a previous verification:

1 Open your most recent verification results in the Viewer.

10-28

Reviewing Orange Checks

2 Select File > Import checks and comments.
3 Navigate to the folder containing your previous results.
4 Select the results (RTE) file, then click Open.

The review comments from the previous results are imported into the
current results.

Once you import checks and comments, the go to next check 4 icon in
assistant mode will skip any reviewed checks, allowing you to review only
checks that you have not reviewed previously. If you want to view reviewed

checks, click the go to next reviewed check g icon.

Note If the code has changed since the previous verification, the imported
comments may not be applicable to your current results. For example, the
justification for an orange check may no longer be relevant to the current code.

Performing an Exhaustive Orange Review

Up to 80% of orange checks can be resolved using multiple iterations of the
process described in “Performing Selective Orange Review” on page 10-26.
However, for extremely critical applications, you may want to resolve all
orange checks. Exhaustive orange review is the process for resolving the
remaining orange checks.

An exhaustive orange review is generally conducted later in the development
process, during the unit testing or integration testing phase. The purpose of
an exhaustive orange review is to analyze any orange checks that were not
resolved during previous selective orange reviews, to identify potential bugs
in those orange checks.

You must balance the time and cost of performing an exhaustive orange
review against the potential cost of leaving a bug in the code. Depending on
your quality objectives, you may or may not want to perform an exhaustive
orange review.

10-29

1 0 Managing Orange Checks

10-30

Cost of Exhaustive Orange Review

During an exhaustive orange review, each orange check takes an average of
5 minutes to review. This means that 400 orange checks require about four
days of code review, and 3,000 orange checks require about 25 days.

However, if you have already completed several iterations of selective orange
review, the remaining orange checks are likely to be more complex than
average, increasing the average time required to resolve them.

Exhaustive Orange Review Methodology
Performing an exhaustive orange review involves reviewing each orange

check individually. As with selective orange review, your goal is to identify
whether the orange check is a:

* potential bug — code which will fail under some circumstances.

® inconclusive check — a check that requires additional information to
resolve, such as the call sequence.

® data set issue — a theoretical set of data that cannot actually occur.

* Basic imprecision — checks caused by imprecise approximation of the
data set used for verification.

Note See “Sources of Orange Checks” on page 10-6 for more information on
each of these causes.

Although you must review each check individually, there are some general
guidelines to follow.

1 Start your review with the modules that have the highest selectivity in
your application.

If the verification finds only one or two orange checks in a module or
function, these checks are probably not caused by either inconclusive
verification or basic imprecision. Therefore, it is more likely that these
orange checks contain actual bugs. In general, these types of orange checks
can also be resolved more quickly.

Reviewing Orange Checks

2 Next, examine files that contain a large percentage of orange checks
compared to the rest of the application. These files may highlight design
issues.

Often, when you examine modules containing the most orange checks,
those checks will prove inconclusive. If the verification is unable to draw a
conclusion, it often means the code is very complex, which can mean low
robustness and quality. See “Inconclusive Verification” on page 10-6.

3 For all files you review, spend the first 10 minutes identifying checks that
you can quickly categorize (such as potential bugs and data set issues),
similar to what you do in a selective orange review.

Even after performing a selective orange review, a significant number of
checks can be resolved quickly. These checks are more likely than average
to reflect actual bugs.

4 Spend the next 40 minutes of each hour tracking more complex bugs.

If an orange check is too complicated to explain quickly, it may be an
inconclusive check caused by complex code structure, or the result of basic
imprecision (approximation of the data set used for verification). These
types of checks often take a substantial amount of time to understand. See
“Basic Imprecision” on page 10-8.

5 Depending on the results of your review, correct the code or comment it to
1dentify the source of the orange check.

Inconclusive Verification and Code Complexity

The most interesting type of inconclusive check occurs when verification
reveals that the code is too complicated. In these cases, most orange checks in
a file are related, and careful analysis identifies a single cause — perhaps a
function or a variable modified many times. These situations often focus on
functions or variables that have caused problems earlier in the development
cycle.

For example, consider a variable Computed_Speed.

* Computed_Speed is first copied into a signed integer (between -2731 and
2731-1).

10-31

1 0 Managing Orange Checks

10-32

e Computed_Speed 1s then copied into an unsigned integer (between 0 and
2731-1).

® Computed_Speed is next copied into a signed integer again.

¢ Finally, Computed_Speed is added to another variable.
The verification reports 20 overflows (OVFL).

This scenario does not cause a real bug, but the development team may know
that this variable caused trouble during development and earlier testing
phases. PolySpace verification also identified a problem, suggesting that

the code is poorly designed.

Resolving Orange Checks Caused by Basic Imprecision

On rare occasions, a module may contain many orange checks caused by
imprecise approximation of the data set used for verification. These checks are
usually local to functions, so their impact on the project as a whole is limited.

In cases of basic imprecision, you may be able to resolve orange checks by
increasing the precision level. If this does not resolve the orange check,
however, verification cannot help directly.

In these cases, PolySpace software can only assist you through the call tree
and dictionary. The code needs to be reviewed using alternate means. These
alternate means may include:

¢ Additional unit tests

® Code review with the developer

¢ Checking an interpolation algorithm in a function

® Checking calibration data

For more information on basic imprecision, see “Sources of Orange Checks”
on page 10-6.

Day to Day Use

® “PolySpace In One Click Overview” on page 11-2
e “Using PolySpace In One Click” on page 11-3

l 1 Day to Day Use

PolySpace In One Click Overview

Most developers verify the same files multiple times (writing new code, unit
testing, integration), and usually need to run verifications on multiple project
files using the same set of options. In a Microsoft Windows environment,
PolySpace In One Click provides a convenient way to streamline your work
when verifying several files using the same set of options.

Once you have set up a project file with the options you want, you designate
that project as the active project, and then send the source files to PolySpace
software for verification. You do not have to update the project with source
file information.

On a Windows systems, the plug-in provides a PolySpace Toolbar in the
Windows Taskbar, and a Send To option on the desktop pop-up menu:

Sek active project 3

Open active project - New_Project

Viewer

Launcher

£ 15

Spoaler
Help 3

Exit

BER EET

Send To d | Compressed (zipped) Folder
Cuk [ﬁ} Deskkop (create shortout)
Copy (# Macromedia FreeHand My
Create Shorkcut | Mail Recipient
Delete I2) Move ko SendTo
Feenams [} My Documents
Properties FalySpace

ﬁ 31 Floppy (A:)

ok DWDJCD-RW Drive (2:)

11-2

Using PolySpace® In One Click

Using PolySpace In One Click

In this section...
“PolySpace In One Click Workflow” on page 11-3

“Setting the Active Project” on page 11-3

“Launching Verification” on page 11-5

“Using the Taskbar Icon” on page 11-8

PolySpace In One Click Workflow

Using PolySpace In One Click involves two steps:
1 Setting the active project.
2 Sending files to PolySpace software for verification.

Setting the Active Project

The active project is the project that PolySpace In One Click uses to verify the
files that you select. Once you have set an active project, it remains active
until you change the active project. PolySpace software uses the analysis
options from the project; it does not use the source files or results directory

from the project.
To set the active project:

1 Right-click the PolySpace In One Click icon in the taskbar area of your
Windows desktop:

The context menu appears.

11-3

l 1 Day to Day Use

Set active project k

Open ackive project - Training_Project

Viewer

Launcher

7 & T

Spoaler
Help »

Exit

2 Select Set active project > Browse from the menu.

The Please set an active project dialog box appears:

114

Using PolySpace® In One Click

Please set an active project. d |

Laak i I&} polvzpace_project j 4= fji v

includes
resulks
S0UFCES

Cia training.cfg

L

File name: || j | Open I
Files af type: IF'DI_I,ISpace configuration files j Cancel |
p

3 Select the project you want to use as the active project.

4 Click Open to apply the changes and close the dialog box.

Note You can also set the active project by right-clicking on a project file
(.cfg or .dsk) file and selecting Send To > PolySpace.

Launching Verification
PolySpace in One Click allows you to send multiple files to PolySpace software
for verification.

11-5

l 1 Day to Day Use

To send a file to PolySpace software for verification:
1 Navigate to the directory containing the source files you want to verify.
2 Right-click the file you want to verify.

3 Select Send To > PolySpace.

Name | Size | Type
m SKE (PP File
Open
Edit
Open with WordPad
=2 Scan for viruses. .,
Cpen YWith 3
30l WWinZip 3
] Compressed (zipped) Folder
Zuk [Lé} Deskkop {create shortbout)
Copy [Fax Destination via RightFax
Create Shortout #% Macromedia FreeHand My
Delete 1 Mail Recipient
Renarne
D My Documents
Properties FolySpace
_ﬂ, 315 Floppy (4:)

The PolySpace basic settings dialog box appears.

11-6

Using PolySpace® In One Click

E PolySpace basic settings [C++] ;lglil

Settings

Precision IOZ

Passes

I PassZ (Software Safety Analysis level 2)

Parameters
Results directory |C:\POIy5pace_Result5 |
Function called before main | |
Main generator write variables IUnin'rt j
Class analysis File analysis | Main analysis
Class IMathUtiIs j
Class analyzer calls IInherited j
[¢] Class only

Scope

C\PolySpace’polyspace_project ‘sources'training cpp

[1]+

[¥] Send to PolySpace Server D) S1a't| @Can:ell

Note The options you specify the basic settings dialog box override any
options set in the configuration file. These options are also preserved
between verifications.

4 Enter the appropriate parameters for your verification.

11-7

l 1 Day to Day Use

5 Click Start.

The verification starts and the verification log appears.

E C:\polyspace_project\results =101 x|
& O -

Mumber of lines cang ;I
Murnber of lines without comments - 106
Mumber of lines with libraries : BB7E

EkE

C++ zource compliance checking dene

Tk

Ending at: Jul 22, 2008 14:6:17

Generating remote file

Dane

Uger time for palyzpace-cpp: 1.9real, 1.90 + 0z

333

=% Fnd of PolySpace Werifier analysis
tik

Adding the analyzizs to the queue ...
Transfering the archive to the server ...

Tranzfer completed.
Analysiz Do 1
The analysiz has heen gqueued. You may follovy itz progress using the spooler.
-
1| | _"l_l

|The analyziz haz been successfully done

Using the Taskbar Icon

The PolySpace in One Click Taskbar icon allows you to access various
software features.

11-8

Using PolySpace® In One Click

Set active project 3

Open active praject - New_Project

Yigwer

Launcher

£ & 7

Spooler
Help 3

Ezxit

[« |[]% B 431 pM

Click the PolySpace Taskbar Icon, then select one of the following options:

® Set active project — Allows you to set the active configuration file. Before
you start, you have to choose a PolySpace configuration file which contains
the common options. You can choose a template of a previous project and
move it to your working directory.

A standard file browser allows you to choose the configuration file. If you
have multiple configuration files, you can quickly switch between them
using the browse history.

) EBrowse ... | Set active project »
O ki jeck - M Project
Zi\PalySpaceimy_project.cfg REM ACLvE project - Hew_Frojec
Z:\PolySpacelc_project.chg | Viewer
Ci\PolySpace\cpp_project.cfg E Launcher
Z:\PolySpacelnew_project.cfg E Spoaler
Z:\PolySpaceloneclick. cfg Help »
Exit =

|“Iﬂ

11-9

l 1 Day to Day Use

11-10

Note No configuration file is selected by default. You can create an empty
file with a .cfg extension.

Open active project — Opens the active configuration file. This allows
you to update the project using the standard PolySpace Launcher graphical
interface. It allows you to specify all PolySpace common options, including
directives of compilation, options, and paths of standard and specific
headers. It does not affect the precision of a verification or the results
directory.

Viewer — Opens the PolySpace viewer. This allows you to review
verification results in the standard graphical interface. In order to load
results into the viewer, you must choose a verification to review in the
Verification Log window.

Launcher — Opens the PolySpace Launcher. This allows you to launch a
verification using the standard PolySpace graphical interface.

Spooler — Opens the PolySpace Spooler. If you selected a server
verification in the “PolySpace Preferences” dialog box, the spooler allows
you to follow the status of the verification.

JSF C++ Checker

® “PolySpace JSF C++ Checker Overview” on page 12-2
e “Using the PolySpace JSF C++ Checker” on page 12-3
e “Supported Rules ” on page 12-11

¢ “Rules Not Checked” on page 12-36

1 2 JSF C++ Checker

PolySpace JSF C++ Checker Overview

The PolySpace JSF C++ checker helps you comply with the Joint Strike
Fighter Air Vehicle C++ coding standards (JSF++). These coding standards
were developed by Lockheed Martin for the JSF program, and are designed to
improve the robustness of C++ code, and improve maintainability.

The PolySpace JSF C++ checker enables PolySpace software to provide
messages when JSF++ rules are not respected. Most messages are reported
during the compile phase of a verification. The JSF C++ checker can check
120 of the 221 JSF++ programming rules .

Note The PolySpace JSF C++ checker is based on JSF++:2005.
For more information on these coding standards, see
http://www.jsf.mil/downloads/documents/JSF_AV_C++_Coding_Standards_Rev_C.doc.

12-2

http://www.jsf.mil/downloads/documents/JSF_AV_C%2B%2B_Coding_Standards_Rev_C.doc

Using the PolySpace® JSF C++ Checker

Using the PolySpace JSF C++ Checker

In this section...
“Setting Up JSF++ Checking” on page 12-3

“Running a Verification with JSF++ Checking” on page 12-7

Setting Up JSF++ Checking

e “Activating the JSF C++ Checker” on page 12-3
® “Creating a JSF++ Rules File” on page 12-4
¢ “Excluding Files from JSF++ Checking” on page 12-6

Activating the JSF C++ Checker

You activate the JSF C++ checker using the options jsf-coding-rules and
includes-to-ignore. These options can be set at the command line, or
through the PolySpace Launcher user interface.

To activate the JSF C++ Checker:

1 Open the PolySpace Client for C/C++ window by double-clicking the
PolySpace Launcher icon on your desktop:

2 Open the project you want to use.

3 In the Analysis options, select Compliance with standards > Check
JSF-C++: 2005 rules.

The software displays the two JSF++ options: jsf-coding-rules and
includes-to-ignore.

12-3

1 2 JSF C++ Checker

[--Check JSF-C++: 2005 rules W~
—Rules configuration
—Files and directories to ignore

. fHst-coding-rules

. fHincludes-to-ignore

These options allow you to specify which rules to check and any files to
exclude from the checker.

4 Select the Check JSF-C++: 2005 rules check box.

Creating a JSF++ Rules File
You must have a rules file to run a verification with JSF++ checking. You can

use an existing file or create a new one.
To create a new rules file:

1 Click the button I_I to the right of the Rules configuration option.

The New File window opens, allowing you to create a new JSF++ rules
file, or open an existing file.

12-4

Using the PolySpace® JSF C++ Checker

x

File
Set the following state to all Jsf rules : IEerr - I El
Rules Error |Warning| Off Comments
JSF AY rules =
i-Mumber of rules by mode : 1 156 7
[Fl-Code Size and Complexity - Rules 1to 3
-1 Any one function {or method) will containnan i 8
-2 There shall not be any self-modifying code, i i f* Mot imolemented
-3 &l functions shall have a cyclomatic complexit] C O
[+-Fules - Rules 4 to 7
----- Terminology
[EI-Enviranment - Rules 3 to 15 oo
-3 all code shall conform to ISO/IEC 14882:2002) % [s
-4 Only those characters specified in the C++bag i« s
--10 Values of character types will be restricted t [= Mot imolemented
--11 Trigraphs will not be used, s [a T
--12 The following digraphs will not be used: "<%g [a T
--13 Multi-byte characters and wide string literals| [a T
--14 Literal suffixes shall use uppercase rather th) i« s
--15 Provision shall be made for run-time checking i« s
[+-Libraries - Rules 16 to 25
[+]-Pre-Processing Directives - Rules 26 to 32 LI

ok Cancel |

2 For each JSF++ rule, specify one of these states:

State Causes the verification to...

Error End after the compile phase when this rule is violated.

Warning Display warning message and continue verification
when this rule is violated.

Off Skip checking of this rule.

12-5

1 2 JSF C++ Checker

12-6

Note The default state for most rules is Warning. The state for rules that
have not yet been implemented is Off. Some rules always have state Error
(you cannot change the state of these).

3 Click OK to save the rules and close the window.
The Save as dialog box opens.
4 In File, enter a name for your rules file.

5 Click OK to save the file and close the dialog box.

Note If your project uses a dialect other than ISO, some JSF++ coding
rules may not be completely checked. For example, AV Rule 8: “All code
shall conform to ISO/IEC 14882:2002(E) standard C++.”

Excluding Files from JSF++ Checking
You can exclude files from JSF++ checking. For example, you may want to
exclude some included files.

To exclude files from JSF++ checking:

1 Click the button I_I to the right of the Files and directories to ignore
option.

The Files and directories to ignore (includes-to-ignore) dialog box opens.

Using the PolySpace® JSF C++ Checker

[x|
~Files and directories to ignore [-includes-to-ignore]
- | - |

COPolyspacetsourcesimath b
COPoly Spacetsourcesmatrix b

ChPalySpacetzourcestincludes

Ok Canicel |

2 Click the folder icon i‘
The Select a file or directory to include dialog box appears.
3 Select the files or directories you want to exclude.

4 Click OK.

The select files and directories appear in the list of files to ignore.

5 Click OK to close the dialog box.

Running a Verification with JSF++ Checking

e “Starting the Verification” on page 12-7
¢ “Examining the JSF Log” on page 12-8

Starting the Verification

When you run a verification with the Check JSF-C++:2005 rules option
selected, the verification checks most of the JSF++ rules during the compile
phase. If there is a violation of a rule with state Error, the verification stops.

12-7

1 2 JSF C++ Checker

Note Some rules address run-time errors.

To start the verification:

Execut
1 Click the Execute button M.

2 If you see a caution that PolySpace software will remove existing results
from the results directory, click Yes to continue and close the message
dialog box.

3 If the verification fails because of JSF++ violations. A message dialog box
appears.

x|

@ Werification process Failed

4 Click OK.

Examining the JSF Log

To examine the JSF++ violations:

1 Click the JSF button in the log area of the Launcher window.

A list of JSF++ violations appear in the log part of the window.

12-8

Using the PolySpace® JSF C++ Checker

CDMpiIE Search: 44 I (44
G
BF lotatus| Rue | Fier | ure | ca
Stats 180 training .cpp 21 [x3
@ Full L i 191 training .cpp 46 19
= o 1a0 training .cpp 109 15
180 training .cpp 142 38

2 Click on any of the violations to see a description of the violated rule, the
full path of the file in which the violation was found, and the source code
containing the violation.

Search; 4<| (13 Detal
i

stetus| Rue | Fier | Une | co

s o Rule: 151 (Error): The break statement shall not be used (except to terminate the ca:

180 training.cpp 109 15
180 training .CRp 142 558

File: C:\Poly3pace‘\polyspace_project:sources‘\training.cpp line 46 (column 19)

Source code

3 Right click the row containing the violation of rule 191 , then select Open
Source File.

statuz| Rue | Fier | ure | ca
180 raining .cpp 21 =3
i
180 tra %= Open Source File

180 tra Open J5F Report
'ﬁ Configure Editor

The source file opens in your text editor.

Note You must configure a text editor before you can open source files.
See “Configuring Text and XML Editors” on page 4-15.

12-9

1 2 JSF C++ Checker

4 Correct any violations reported in the log, then run the verification again to
ensure compliance with all JSF++ rules.

12-10

Supported Rules

Supported Rules

In this section...

“Code Size and Complexity” on page 12-12
“Environment” on page 12-12
“Libraries” on page 12-13
“Pre-Processing Directives” on page 12-14
“Header Files” on page 12-15
“Style” on page 12-15

“Classes” on page 12-19

“Namespaces” on page 12-23

“Templates” on page 12-23

“Functions” on page 12-23
“Comments” on page 12-25

“Declarations and Definitions” on page 12-25
“Initialization” on page 12-26

“Types” on page 12-27
“Constants” on page 12-27

“Variables” on page 12-27

“Unions and Bit Fields” on page 12-28
“Operators” on page 12-28

“Pointers and References” on page 12-30
“Type Conversions” on page 12-31

“Flow Control Standards” on page 12-32
“Expressions” on page 12-33

“Memory Allocation” on page 12-35
“Fault Handling” on page 12-35
“Portable Code” on page 12-35

12-11

1 2 JSF C++ Checker

Code Size and Complexity

N. JSF++ Definition Comments
1 Any one function (or method) will contain | Message in log file:
no more than 200 logical source lines of . .
<function name> has <num> logical
code (L-SLOCs). .
source lines of code.
3 All functions shall have a cyclomatic Message in log file:
complexity number of 20 or less. AneaeT femes TRe eyeTanEs
complexity number equal to <num>
Environment
N. JSF++ Definition Comments
8 All code shall conform to ISO/IEC Reports the compilation error message
14882:2002(E) standard C++.
9 Only those characters specified in the C++
basic source character set will be used.
11 Trigraphs will not be used.
12 The following digraphs will not be used: Message in log file:
<6 e, <, 17, %, i The following digraph will not be
used: <digraph>
Reports the digraph. If the rule level is
set to warning, the digraph will be allowed
even 1if it 1s not supported in -dialect iso
13 Multi-byte characters and wide string Report L'c’ and L"string" and use of
literals will not be used. wchar_t.
14 Literal suffixes shall use uppercase rather
than lowercase letters.
15 Provision shall be made for run-time Done with RTE checks in the Verifier.

checking (defensive programming).

12-12

Supported Rules

Libraries

N. JSF++ Definition Comments

17 The error indicator errno shall not be errno should not be used as a macro or a
used. global with external "C" linkage.

18 The macro offsetof, in library offsetof should not be used as a macro or
<stddef.h>, shall not be used. a global with external "C" linkage.

19 <locale.h> and the setlocale function setlocale and localeconv should not be
shall not be used. used as a macro or a global with external

"C" linkage.

20 The setjmp macro and the longjmp setjmp and longjmp should not be used
function shall not be used. as a macro or a global with external "C"

linkage.

21 The signal handling facilities of <signal.h> | signal and raise should not be used
shall not be used. as a macro or a global with external "C"

linkage.

22 The input/output library <stdio.h> shall | all standard functions of <stdio.h> should
not be used. not be used as a macro or a global with

external "C" linkage.

23 The library functions atof, atoi and atol | atof, atoi and atol should not be used
from library <stdlib.h> shall not be used. | as a macro or a global with external "C"

linkage.

24 The library functions abort, exit, getenv | abort, exit getenv and system should
and system from library <stdlib.h> shall | not be used as a macro or a global with
not be used. external "C" linkage.

25 The time handling functions of library clock, difftime, mktime, asctime, ctime,

<time.h> shall not be used.

gmtime, localtime and strftime should
not be used as a macro or a global with
external "C" linkage.

12-13

1 2 JSF C++ Checker

Pre-Processing Directives

JSF++ Definition

Comments

26

Only the following pre-processor directives
shall be used: #ifndef, #define, #endif,
#include.

27

#ifndef, #define and #endif will be used
to prevent multiple inclusions of the same
header file. Other techniques to prevent
the multiple inclusions of header files will
not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28

The #ifndef and #endif pre-processor
directives will only be used as defined in
AV Rule 27 to prevent multiple inclusions
of the same header file.

Detects any use that does not comply
with AV Rule 27. Assuming 35/27 is not
violated, reports only #ifndef.

29

The #define pre-processor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition
of a macro function (29.def) and the call of
a macrofunction (29.use).Messages in log
file:

® 29.1 The #define pre-processor
directive shall not be used to
create inline macros.

® 29.2 : Inline functions shall be
used intead of inline macros

30

The #define pre-processor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31

The #define pre-processor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used
to guard for multiple inclusion, assuming
that rules 35 and 27 are not violated.

32

The #include pre-processor directive will
only be used to include header (*.h) files.

12-14

Supported Rules

Header Files

N. JSF++ Definition Comments

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism
that prevents multiple inclusions of itself.

39 Header files (*.h) will not contain Reports definitions of global variables /
non-const variable definitions or function function in header.
definitions.

Style

N. JSF++ Definition Comments

40 Every implementation file shall include Reports when type, template, or inline
the header files that uniquely define the function is defined in source file.
inline functions, types, and templates
used.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a Reports when two consecutive expression
separate line. statements are on the same line.

43 Tabs should be avoided.

44 All indentations will be at least two spaces | Reports when a statement indentation
and be consistent within the same source | is not at least two spaces more than the
file. statement containing it. Does not report

bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and

external) will not rely on significance of
more than 64 characters.

12-15

1 2 JSF C++ Checker

N. JSF++ Definition Comments
47 Identifiers will not begin with the

underscore character’ ’

48 Identifiers will not differ by: Checked regardless of scope. Not checked
between macros and other identifiers.

. .

Only a mixture of case Messages in log file:
® The presence/absence of the underscore
character ® Identifier "Idf1" (filel.cpp line
¢ The interchange of the letter ’O’; with 11. SEIUGR @) el T §f11e2.h
s o line 12 column c2) only differ
the number ’0’ or the letter 'D
by the presence/absence of the

¢ The interchange of the letter 'T’; with underscore character.

e mniiber 1 e e leticr 1 e Identifier "Idf1" (filel.cpp line
® The interchange of the letter ’S’ with the 11 column c1) and "Idf2" (file2.h

number ’5’ line 12 column c¢2) only differ by
® The interchange of the letter 'Z’ with the CRLES UG

number 2 ® Identifier "Idf1" (filel.cpp line
® The interchange of the letter n’ with the 11. column ci) and *ldf2 §f11e2.h

letter 'h’ line 12 column c2) only differ by

letter '0', with the number '0'.
50 The first word of the name of a class, Messages in log file:

structure, namespace, enumeration, or ® The first word of the name of

type created with typedef will begin with a class will begin with an

an uppercase letter. All others letters will uppercase letter.

22 loverense: ® The first word of the namespace
of a class will begin with an
uppercase letter.

51 All letters contained in function and Messages in log file:

variables names will be composed entirely
of lowercase letters.

All letters contained in variable
names will be composed entirely
of lowercase letters.

All letters contained in function
names will be composed entirely
of lowercase letters.

12-16

Supported Rules

N. JSF++ Definition Comments
52 Identifiers for constant and enumerator Messages in log file:
values shall be lowercase. e Identifier for enumerator value
shall be lowercase.
® Identifier for template constant
parameter shall be lowercase.
53 Header files will always have file name .H is allowed if you set the option -dos.
extension of ".h".
53.1 The following character sequences shall
not appear in header file names: ', \, /*,
//,or".
54 Implementation files will always have a Not case sensitive if you set the option
file name extension of ".cpp". -dos.
57 The public, protected, and private sections
of a class will be declared in that order.
58 When declaring and defining functions Detects that two parameters are not on the

with more than two parameters, the
leading parenthesis and the first argument
will be written on the same line as the
function name. Each additional argument
will be written on a separate line (with the
closing parenthesis directly after the last
argument).

same line, The first parameter should be
on the same line as function name. Does
not check for the closing parenthesis.

12-17

1 2 JSF C++ Checker

JSF++ Definition

Comments

59

The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in

braces, even if the braces form an empty
block.

Messages in log file:

® The statements forming the body
of an if statement shall always
be enclosed in braces.

® The statements forming the body
of an else statement shall always
be enclosed in braces.

® The statements forming the body
of a while statement shall always
be enclosed in braces.

® The statements forming the body
of a do ... while statement
shall always be enclosed in
braces.

® The statements forming the body
of a for statement shall always
be enclosed in braces.

60

Braces ("{}") which enclose a block will
be placed in the same column, on separate
lines directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61

Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

12-18

Supported Rules

N. JSF++ Definition Comments
62 The dereference operator “*’ and the Reports when there is a space between
address-of operator ‘&’ will be directly type and "*" "&" for variables, parameters
connected with the type-specifier. and fields declaration.
63 Spaces will not be used around ‘.’ or ‘->’, nor | Reports when the following characters are
between unary operators and operands. not directly connected to a white space:
. .
° >
o !
o ~
[}
o ++
(@ upe—
Note A violation will be reported for “.”
used in float/double definition.
Classes
N. JSF++ Definition Comments
67 Public and protected data should only be
used in structs - not classes.
68 Unneeded implicitly generated member Reports when default constructor,
functions shall be explicitly disallowed. assignment operator, copy constructor or
destructor is not declared.
71.1 A class’s virtual functions shall not be Reports when a constructor or destructor

invoked from its destructor or any of its
constructors.

directly calls a virtual function.

12-19

1 2 JSF C++ Checker

N. JSF++ Definition Comments
74 Initialization of nonstatic class members All data should be initialized in the
will be performed through the member initialization list except for array. Does not
initialization list rather than through report that an assignment exists in ctor
assignment in the body of a constructor. body.Message in log file:
Initialization of nonstatic class
members "<field>" will be performed
through the member initialization
list.
75 Members of the initialization list shall
be listed in the order in which they are
declared in the class.
76 A copy constructor and an assignment Messages in log file:
operator shall be declared for classes that
contain pointers to data items or nontrivial | ® no copy constructor and no copy
destructors. assign
® no copy constructor
® no copy assign
77.1 The definition of a member function Does not report when an explicit copy
shall not contain default arguments that | constructor exists.
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.
78 All base classes with a virtual function
shall define a virtual destructor.
79 All resources acquired by a class shall be Reports when the number of “new” called

released by the class’s destructor.

in a constructor is greater than the number
of “delete” called in its destructor.

Note A violation is raised even if “new”
is done in a “if/else”.

12-20

Supported Rules

JSF++ Definition

Comments

81

The assignment operator shall handle
self-assignment correctly.

Reports when copy assignment body does
not begin with “if (this != arg)” A
violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82

An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=
operator+=
operator-=
operator*=
operator >>=
operator <<=
operator /=
operator %=
operator |=
operator &=
operator "=
prefix operator++
prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in log file:

® An assignment operator shall
return a reference to *this.

® An assignment operator shall
return a reference to its first
arg.

12-21

1 2 JSF C++ Checker

N. JSF++ Definition Comments
83 An assignment operator shall assign Reports when a copy assignment does not
all data members and bases that affect assign all data members. In a derived class,
the class invariant (a data element it also reports when a copy assignment
representing a cache, for example, would does not call inherited copy assignments.
not need to be copied).
88 Multiple inheritance shall only be Messages in log file:
allowed in the following restricted form: n
interfaces plus m private implementations, | ® Multiple inheritance on public
plus at most one protected implementation. implementation shall not be
allowed: <public_base_class> is
not an interface.
® Multiple inheritance on
protected implementation
shall not be allowed
<protected_base _class_1>
® <protected_base_class_2> are not
interfaces.
88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.
89 A base class shall not be both virtual and
non-virtual in the same hierarchy.
94 An inherited nonvirtual function shall not | Does not report for destructor.Message in
be redefined in a derived class. log file:
Inherited nonvirtual function %s
shall not be redefined in a derived
class.
95 An inherited default parameter shall
never be redefined.
96 Arrays shall not be treated Reports pointer arithmetic and array like

polymorphically.

access on expressions whose pointed type
is used as a base class.

12-22

Supported Rules

N. JSF++ Definition Comments
97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay,
Not checked on private methods
97.1 Neither operand of an equality operator Reports == and != on pointer to member
(== or !=) shall be a pointer to a virtual function of polymorphic classes (cannot
member function. determine statically if it is virtual or not),
except when one argument is the null
constant.
Namespaces
N. JSF++ Definition Comments
98 Every nonlocal name, except main(),
should be placed in some namespace.
99 Namespaces will not be nested more than
two levels deep.
Templates
N. JSF++ Definition Comments
104 A template specialization shall be declared | Reports the actual compilation error
before its use. message.
Functions
N. JSF++ Definition Comments
107 Functions shall always be declared at file
scope.
108 Functions with variable numbers of

arguments shall not be used.

12-23

1 2 JSF C++ Checker

N. JSF++ Definition Comments

109 A function definition should not be placed | Reports when there is no "inline" in the
in a class specification unless the function | definition of a member function inside the
1s intended to be inlined. class definition.

110 Functions with more than 7 arguments
will not be used.

111 A function shall not return a pointer or Simple cases without alias effect detected.
reference to a non-static local object.

113 Functions will have a single exit point. Reports first return, or once per function.

114 All exit points of value-returning functions
shall be through return statements.

116 Small, concrete-type arguments (two or Report constant parameters references
three words in size) should be passed with sizeof <= 2 * sizeof(int). Does
by value if changes made to formal not report for copy-constructor.
parameters should not be reflected in the
calling function.

119 Functions shall not call themselves, either | Direct recursion is reported statically.
directly or indirectly (i.e. recursion shall Indirect recursion reported through
not be allowed). Verifier. Message in log file:

Function <F> shall not call
directly itself.

121 Only functions with 1 or 2 statements Reports inline functions with more than 2

should be considered candidates for inline
functions.

statements.

12-24

Supported Rules

Comments

JSF++ Definition

Comments

126

Only valid C++ style comments (//) shall
be used.

133

Every source file will be documented
with an introductory comment that
provides information on the file name,
its contents, and any program-required
information (e.g. legal statements,
copyright information, etc).

Reports when a file does not begin with
two comment lines.

Declarations and Definitions

JSF++ Definition

Comments

135

Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

136

Declarations should be at the smallest
feasible scope.

Reports when:
® A global variable is used in only one
function.

e A local variable is not used in a
statement (expr, return, init ...) of
the same level of its declaration (in
the same block) or is not used in two
sub-statements of its declaration.

Note

® Non-used variables are reported.

¢ Initializations at definition are ignored
(not considered an access)

12-25

1 2 JSF C++ Checker

N. JSF++ Definition Comments
137 All declarations at file scope should be
static where possible.
138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.
139 External objects will not be declared in Reports all duplicate declarations inside
more than one file. a translation unit. Reports when the
declaration localization is not the same in
140 The register storage class specifier shall
not be used.
141 A class, structure, or enumeration will not
be declared in the definition of its type.
Initialization
N. JSF++ Definition Comments
142 All variables shall be initialized before Done with NIV and LOCAL_NIV checks
use. in the Verifier.
144 Braces shall be used to indicate and match | This covers partial initialization.
the structure in the non-zero initialization
of arrays and structures.
145 In an enumerator list, the =" construct Generates one report for an enumerator

shall not be used to explicitly initialize
members other than the first, unless all
items are explicitly initialized.

list.

12-26

Supported Rules

Types
N. JSF++ Definition Comments
147 The underlying bit representations of Reports on casts with float pointers (except
floating point numbers shall not be used | with void*).
in any way by the programmer.
148 Enumeration types shall be used instead Reports when non enumeration types are
of integer types (and constants) to select used in switches.
from a limited series of choices.
Constants
N. JSF++ Definition Comments
149 Octal constants (other than zero) shall
not be used.
150 Hexadecimal constants will be represented
using all uppercase letters.
151 Numeric values in code will not be used; | Reports direct numeric constants (except
symbolic values will be used instead. integer/float value 1, 0) in expressions,
non -const initializations. and switch
cases. char constants are allowed. Does not
report on templates non-type parameter.
151.1 | A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.A violation is
raised if a string literal (for example, “) is
cast as a non const.
Variables
N. JSF++ Definition Comments
152 Multiple variable declarations shall not

be allowed on the same line.

12-27

1 2 JSF C++ Checker

Unions and Bit Fields

N. JSF++ Definition Comments

153 Unions shall not be used.

154 Bit-fields shall have explicitly unsigned
integral or enumeration types only.

156 All the members of a structure (or class) Reports unnamed bit-fields (unnamed
shall be named and shall only be accessed | fields are not allowed).
via their names.

Operators
N. JSF++ Definition Comments
157 The right hand operand of a && or | | Assumes rule 159 is not violated.Messages
operator shall not contain side effects. in log file:

® The right hand operand of a &&
operator shall not contain side
effects.

® The right hand operand of a ||
operator shall not contain side

effects.
158 The operands of a logical && or | | shall Messages in log file:
be parenthesized if the operands contain ® The operands of a logical &&
binary operators. shall be parenthesized if
the operands contain binary
operators.

® The operands of a logical ||
shall be parenthesized if
the operands contain binary
operators.

12-28

Supported Rules

N. JSF++ Definition Comments
Exception for:
X11Y || Z, Z&&Y &&Z
159 Operators | |, &&, and unary & shall not be | Messages in log file:
overloaded. ® Unary operator & shall not be
overloaded.
® QOperator || shall not be
overloaded.
® QOperator && shall not be
overloaded.
160 An assignment expression shall be used Only simple assignment, not +=, ++, etc.
only as the expression in an expression
statement.
162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.
163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator
shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).
164.1 | The left-hand operand of a right-shift Detects constant case +. Verifier used for
operator shall not have a negative value. | dynamic cases.
165 The unary minus operator shall not be
applied to an unsigned expression.
166 The sizeof operator will not be used on
expressions that contain side effects.
168 The comma operator shall not be used.

12-29

1 2 JSF C++ Checker

Pointers and References

169

JSF++ Definition

Pointers to pointers should be avoided
when possible.

Reports second-level pointers, except for
arguments of main.

170

More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171

Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

® the same object,

® the same function,

* members of the same object, or

¢ clements of the same array (including
one past the end of the same array).

Reports when relational operator are used
on pointer types (casts ignored).

173

The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased
to exist.

174

The null pointer shall not be
de-referenced.

Done with IDP checks in Verifier.

175

A pointer shall not be compared to NULL
or be assigned NULL; use plain 0 instead.

Reports usage of NULL macro in pointer
contexts.

176

A typedef will be used to simplify
program syntax when declaring function
pointers.

Reports non-typedef function pointers,
or pointers to member functions for types
of variables, fields, parameters. Returns
type of function, cast, and exception
specification.

12-30

Supported Rules

Type Conversions

N. JSF++ Definition Comments
177 User-defined conversion functions should | Reports user defined conversion function,
be avoided. non-explicit constructor with one
parameter or default value for others
(even undefined ones). Does not report
copy-constructor.
Additional message for constructor case:
This constructor should be flagged
as "explicit".
178 Down casting (casting from base to derived | Reports explicit down casting,
class) shall only be allowed through one of | dynamic_cast included. (No special
the following mechanism: case for visitor pattern.)
¢ Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).
e Use of the visitor (or similar) pattern
(most likely useful in complicated cases).
179 A pointer to a virtual base class shall not | Reports this specific down cast. Allows
be converted to a pointer to a derived class. | dynamic_cast.
180 Implicit conversions that may result in a Reports the following implicit casts :
loss of information shall not be used. integer => smaller integer
unsigned => smaller or eq signed
signed => smaller or eq un-signed
integer => float
float => integer
Does not report for cast to bool reports for
implicit cast on constant done with the
options -detect-unsigned-overflows or
-ignore-constant-overflows
181 Redundant explicit casts will not be used. | Reports useless cast: cast T to T. Casts

to equivalent typedefs are also reported.

12-31

1 2 JSF C++ Checker

N. JSF++ Definition Comments
182 Type casting from any type to or from Does not report when Rule 181 applies.
pointers shall not be used.
184 Floating point numbers shall not be Reports float->int conversions. Does not
converted to integers unless such a report implicit ones.
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.
185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional
C-style casts.
Flow Control Standards
N. JSF++ Definition Comments
186 There shall be no unreachable code. Done with gray checks in the Verifier.
187 All non-null statements shall potentially
have a side-effect.
188 Labels will not be used, except in switch
statements.
189 The goto statement shall not be used.
190 The continue statement shall not be
used.
191 The break statement shall not be used
(except to terminate the cases of a switch
statement).
192 All if, else if constructs will contain else if should contain an else clause.

either a final else clause or a comment
indicating why a final else clause is not
necessary.

12-32

Supported Rules

N. JSF++ Definition Comments

193 Every non-empty case clause in a switch
statement shall be terminated with a
break statement.

194 All switch statements that do not intend | Reports only for missing default.
to test for every enumeration value shall
contain a final default clause.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used | Assumes 1 loop parameter.
as loop counters.

198 The initialization expression in a for Reports if loop parameter cannot be
loop will perform no actions other than determined. Assumes Rule 200 is not
to initialize the value of a single for loop | violated. The loop variable parameter is
parameter. assumed to be a variable.

199 The increment expression in a for loop Assumes 1 loop parameter (Rule 198),
will perform no action other than to with non class type. Rule 200 must not be
change a single loop parameter to the next | violated for this rule to be reported.
value for the loop.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a Assumes 1 loop parameter (AV rule 198),
for loop for iteration counting shall not be | and no alias writes.
modified in the body of the loop.

Expressions
N. JSF++ Definition PolySpace Comments
202 Floating point variables shall not be Reports only direct equality/inequality.

tested for exact equality or inequality.

Check done for all expressions.

12-33

1 2 JSF C++ Checker

N. JSF++ Definition PolySpace Comments
203 Evaluation of expressions shall not lead | Done with the SCAL-OVFL and
to overflow/underflow. FLOAT-OVFL checks in the Verifier.
204 A single operation with side-effects shall Reports when:
only be used in the following contexts:
e A side effect is found in a return
® by itself statement
¢ the right-hand side of an assignment ¢ A side effect exists on a single value,
. and only one operand of the function call
® a condition :
has a side effect.
¢ the only argument expression with a
side-effect in a function call
® condition of a loop
e switch condition
¢ single part of a chained operation
204.1 | The value of an expression shall be the Reports when:
same under any order of evaluation that
the standard permits. ® Variable is written more than once in
an expression
e Variable is read and write in
sub-expressions
e Volatile variable is accessed more than
once
Note Read-write operations such as ++,
are only considered as a write.
205 The volatile keyword shall not be used Reports if volatile keyword is used.

unless directly interfacing with hardware.

12-34

Supported Rules

Memory Allocation

N. JSF++ Definition Comments

206 Allocation/deallocation from/to the Reports calls to C library functions:
free store (heap) shall not occur after malloc / calloc / realloc / free and
initialization. all new/delete operators in functions or

methods.
Fault Handling
N. JSF++ Definition Comments
208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.
Portable Code

N. JSF++ Definition Comments

209 The basic types of int, short, long, Only allows use of basic types through
float and double shall not be used, direct typedefs.
but specific-length equivalents should be
typedef’d accordingly for each compiler,
and these type names used in the code.

213 No dependence shall be placed on Reports when a binary operation has one
C++’s operator precedence rules, below operand that is not parenthesized and is
arithmetic operators, in expressions. an operation with inferior precedence level.

Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

215 Pointer arithmetic will not be used. Reports:

p+1I
p-1I
p++
p - -
p+=

p-= Allows p[i].

12-35

1 2 JSF C++ Checker

Rules Not Checked

In this section...

“Code Size and Complexity” on page 12-37
“Rules” on page 12-37

“Environment” on page 12-37
“Libraries” on page 12-38

“Header Files” on page 12-38

“Style” on page 12-38

“Classes” on page 12-39
“Namespaces” on page 12-40
“Templates” on page 12-41
“Functions” on page 12-41
“Comments” on page 12-42
“Initialization” on page 12-42

“Types” on page 12-43

“Unions and Bit Fields” on page 12-43
“Operators” on page 12-43

“Type Conversions” on page 12-43
“Expressions” on page 12-43

“Memory Allocation” on page 12-44
“Portable Code” on page 12-44
“Efficiency Considerations” on page 12-44
“Miscellaneous” on page 12-45

“Testing” on page 12-45

12-36

Rules Not Checked

Code Size and Complexity

N. JSF++ Definition
2 There shall not be any self-modifying code.
Rules
N. JSF++ Definition
4 To break a “should” rule, the following approval must be received by the developer:
e approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)
5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:
e approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)
¢ approval from the software product manager (obtained by the unit approval in the
developmental CM tool)
6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation). Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.
7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.
Environment
N. JSF++ Definition
10 Values of character types will be restricted to a defined and documented subset of ISO

10646 1.

12-37

1 2 JSF C++ Checker

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with
safety-critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.

36 Compilation dependencies should be minimized when possible.

37 Header (include) files should include only those header files that are required for them
to successfully compile. Files that are only used by the associated .cpp file should be
placed in the .cpp file—not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.

49 All acronyms in an identifier will be composed of uppercase letters.

55 The name of a header file should reflect the logical entity for which it provides
declarations.

56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the
header file that provides the corresponding declarations.) At times, more than one .cpp
file for a given logical entity will be required. In these cases, a suffix should be appended
to reflect a logical differentiation.

12-38

Rules Not Checked

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.

65 A structure should be used to model an entity that does not require an invariant.

66 A class should be used to model an entity that maintains an invariant.

69 A member function that does not affect the state of an object (its instance variables) will

be declared const.
Member functions should be const by default. Only when there is a clear, explicit reason
should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.

71 Calls to an externally visible operation of an object, other than its constructors, shall
not be allowed until the object has been fully initialized.

72 The invariant for a class should be:

® A part of the postcondition of every class constructor,
e A part of the precondition of the class destructor (if any),

e A part of the precondition and postcondition of every other publicly accessible

operation.

73 Unnecessary default constructors shall not be defined.

77 A copy constructor shall copy all data members and bases that affect the class invariant
(a data element representing a cache, for example, would not need to be copied).

80 The default copy and assignment operators will be used for classes when those operators
offer reasonable semantics.

84 Operator overloading will be used sparingly and in a conventional manner.

85 When two operators are opposites (such as == and !=), both will be defined and one will
be defined in terms of the other.

86 Concrete types should be used to represent simple independent concepts.

87 Hierarchies should be based on abstract classes.

12-39

1 2 JSF C++ Checker

JSF++ Definition

90

Heavily used interfaces should be minimal, general and abstract.

91

Public inheritance will be used to implement “is-a” relationships.

92

A subtype (publicly derived classes) will conform to the following guidelines with respect
to all classes involved in the polymorphic assignment of different subclass instances to
the same variable or parameter during the execution of the system:

¢ Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

e Postconditions of derived methods must be at least as strong as the postconditions
of the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93

“has-a” or “is-implemented-in-terms-of” relationships will be modeled through
membership or non-public inheritance.

Namespaces

JSF++ Definition

100

Elements from a namespace should be selected as follows:

® using declaration or explicit qualification for few (approximately five) names,

® using directive for many names.

12-40

Rules Not Checked

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.

102 Template tests shall be created to cover all actual template instantiations.

103 Constraint checks should be applied to template arguments.

105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.
Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.

115 If a function returns error information, then that error information will be tested.

117 Arguments should be passed by reference if NULL values are not possible:
e 117.1 — An object should be passed as const T& if the function should not change
the value of the object.

® 117.2 — An object should be passed as T& if the function may change the value of
the object.

118 Arguments should be passed via pointers if NULL values are possible:
® 118.1 — An object should be passed as const T* if its value should not be modified.

® 118.2 — An object should be passed as T* if its value may be modified.

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal

122 Trivial accessor and mutator functions should be inlined.

123 The number of accessor and mutator functions should be minimized.

12-41

1 2 JSF C++ Checker

N. JSF++ Definition

124 Trivial forwarding functions should be inlined.

125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.

128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.)
outside of the file being documented will not be allowed.

129 Comments in header files should describe the externally visible behavior of the functions
or classes being documented.

130 The purpose of every line of executable code should be explained by a comment, although
one comment may describe more than one line of code.

131 One should avoid stating in comments what is better stated in code (i.e. do not simply
repeat what is in the code).

132 Each variable declaration, typedef, enumeration value, and structure member will
be commented.

134 Assumptions (limitations) made by functions should be documented in the function’s
preamble.

Initialization
N. JSF++ Definition
143 Variables will not be introduced until they can be initialized with meaningful values.

(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

12-42

Rules Not Checked

Types
N. JSF++ Definition
146 Floating point implementations shall comply with a defined floating point standard.
The standard that will be used is the ANSI/IEEE Std 754 [1].
Unions and Bit Fields
N. JSF++ Definition
155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.
Operators
N. JSF++ Definition
167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.
Type Conversions
N. JSF++ Definition
183 Every possible measure should be taken to avoid type casting.
Expressions
N. JSF++ Definition
204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment

3 a condition

12-43

1 2 JSF C++ Checker

N. JSF++ Definition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation
Memory Allocation
N. JSF++ Definition
207 Unencapsulated global data will be avoided.
Portable Code
N. JSF++ Definition
210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes,
nonstatic data member ordering across access specifiers, etc.).
210.1 | Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.
211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles
begin at particular addresses.
212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a
special order shall not be done.
Efficiency Considerations
N. JSF++ Definition
216 Programmers should not attempt to prematurely optimize code.

12-44

Rules Not Checked

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.
Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

220 Structural coverage algorithms shall be applied against flattened classes.

221 Structural coverage of a class within an inheritance hierarchy containing virtual
functions shall include testing every possible resolution for each set of identical
polymorphic references.

12-45

1 2 JSF C++ Checker

12-46

Using PolySpace Software
in Visual Studio

1 3 Using PolySpace® Software in Visual Studio®

Verifying Code in Visual Studio

In this section...

“Creating a Visual Studio Project” on page 13-4

“Setting Up and Starting a PolySpace Verification in Visual Studio” on
page 13-5

“Monitoring a Verification” on page 13-13
“Reviewing Verification Results in Visual Studio” on page 13-15

“Using the PolySpace Spooler” on page 13-15

You can apply the powerful code verification functionality of PolySpace
software to code that you develop within the Visual Studio® Integrated
Development Environment (IDE).

A typical workflow is:

1 Use the Visual Studio editor to create a project and develop code within
this project.

2 Set up the PolySpace verification by configuring analysis options and
settings, and then start the verification.

3 Monitor the verification.

4 Review the verification results.

Before you can verify code in Visual Studio, you must install the PolySpace
plug-in for Visual. NET. For more information , see “PolySpace Plug-In
Requirements” and “Installing the PolySpace C++ Add-In for Visual Studio”
in the PolySpace Installation Guide.

Once you have installed the plug-in, in the Visual Studio editor, you can
access:

¢ A PolySpace menu
¢ A PolySpace Log view

13-2

Verifying Code in Visual Studio®

3% IHM - Microsoft Yisual Studio = B
File Edit Wiew Project Build Debug | PolySpace | Tools Window Community Help
B e # Ga @ Viewer - \Win3z - | ;'
B % ko Az =P [Launcher
~DlglInit.cpp Spooler >(_ lution ‘THM' (1 pro:
I(Glohal Scope) j I & Display Polyspace Log ZI =& =
B /¢ DlgInit.cpp : implement @) Help ? _; Efolution THM' (1 project)
oy e asou | 2 52 M
- [Header Files
#include "stdafx.h" - [Resource Files

= | Source Files

- €4 Calarmlnfo. cpp
€+ CPasswid.cpp
B o

..... €+ DigMessage.cpp

#include "IHM.h"
finclude "DlgInit.h™

£ #ifdef DEBUG
#define new DEBUG_NEW Cﬂ EditColor.cpp
#undef THIS FILE e cj THM.cpp
-static char THIS_FILE[] = _FILE : | G if;aIHM.rc

gendiz b €] IHMDIg.cpp

----- Cj IHMDlgalarmes.cpp
RN NSNS FN RN RN R ErE | 7 IHMDIgConfig.cpp
// Dlginit dialeg - o HMInk cpp

----- €+ THMMy. cpp
FEEEERERFFEFEFEFEFEFEFETdTdTdrdrdrirddidididiie || 7 > il RSt

// Dlginit dialeg @ IHMsite.cpp

----- Cj IHMTaa.cpp

----- ReadMe. bxt

----- Gj Sellist.cpp

----- Gj StaticCalor.cpp

DlgInit::DlgInit(C3tring *Mess,

int nh3ec, b Cj Stdafx. cpp
BooOL % finlhttente, | i i Cj YPRRep.cpp
dlgMessage bTon, £ «g.a taolib.lib

= CWnd* pParent /*=NULL*/)

“{;ﬂ sodr.nkd_msc.xd6.lib
Chialogi(DlgInit::IDD, pParent)

//4{AFY DATL INIT(DlgInit)

//¥VAFX DATL INIT &
< | _bl_l @ PolySpace Log DiSqution Explarer 'Q}CIass Mg |fProperties

Ready

4

13-3

1 3 Using PolySpace® Software in Visual Studio®

Creating a Visual Studio Project

If your source files do not belong to a Visual Studio project, you can create
one using the Visual Studio editor:

1 Select File > New > Project > New > Project Console Win32 to create
a project space

2 Enter a project name, for example, CppExample.
3 Save this project in an appropriate location, for example,

C:\PolySpace\Visual. The software creates some files and a Project
Console Win32.

To add files to your project:

1 Select the Browse the solution tab.

2 Right-click the project name. From the pop-up menu, select Add > Add
existing element .

3 Add the files you want (for example, matrix.cpp and matrix.h in

<PolySpaceProduct>/Examples/Demo_Cpp_Long/sources) to the project
(for example, CppExample).

13-4

Verifying Code in Visual Studio®

Setting Up and Starting a PolySpace Verification in
Visual Studio

To set up and start a verification:

1 In the Visual Studio Solution Explorer view, select one or more files
that you want to verify.

2 Right-click the selection, and select PolySpace Verification.

9% IHM - Microsoft ¥isual Studio H[=] 3
Fil= Edit Wiew Project Buld Debug PolySpace Tools Window Community Help
RS - R TRECNEEN - - 8- | b Debug v Win3z - | [;'
A% a|EE|=2 0P@E @
/f)lglnit.cpp]
I(Global Scope) ﬂ I
=44 DlgInit.epp : implementation filET
L =

3 Resource Files

B [Source Fles

C:] ChalarmInfa.cpp
C:] CPasswd.cpp

#include "stdafx.h"
#include "IHM.h"
#linclude "DlgInit.h"

L r,:]

[#ifdef DEEUG C:] DlgMessage| PolySpace Yerification
#define new DEEUG_NEW - G+ EditColor.cf o

-] ©pen

H#undef THIS_FILE f-:] IHM.cpp

Lstatic char THIZ_FILE[] = _ FILE_ : o THM.re Cpen With...
#endif THMDlg. cppy [Z] View Code

IHMDlgalar

SEGEEEESEE IR R THMDIgCond <& Compile

/4 DlglInit dialog IHMInt.cpp
THMM. cpp
IHMPes.cpg 0 Cut
THMSite. cpy

Exclude From Project

FELEEEE TR T I RS
/¢ DlgInit dialog

IHMTao.cpy sa Copy
Readie. bxl >(Remove
DlgInit::DlgInit(CString *Mess selist.cop Rename
o X 4 StaticColor
int nb3ec, Skdafx. cppd __=-, Propetties
BOOL % finAttente, (.:] YPRRER. cop
dlgMessaye bTon, ‘ga taalib. lib
=] CWnd* pParent /*=NU 6:«;3 xdrnitd_msc. %86 i
: Clialog(DlgInit::IDD, pParent)
i
J/{{LFE_DATA INIT(DlgInit)
//}}YAFZ DATA INIT =
4| | LIJ -:jSolution Explorer IQ}CIass Wiew | SiProperties |@ PolySpace Log

Ready

The Easy Settings dialog box opens.

13-5

1 3 Using PolySpace® Software in Visual Studio®

Bicysetomgs i
Settings
Precision |D2 j
Passes IPassZ [Software Safety Analysiz level 2) j
R R DDDEEEEEERRPRPRPRPDPRDRBR -
4 -
Parameters
Results directory |C:\Resu|ts'\hash_2005_3

Function called before main |

Main generator write variables |Uninit

Class analysis File analysis | Main analysis
Class CIHMInte = ﬂ
Class analyzer calls IUnused j
[¥] Class only
Scope

hiWisual Studic\Example Projects\IhmPes\IHMInt.cpp
h:Wisual Studio\Example Projects\IhmPecs\IHMInt.h

[v [+

0 Send to PolySpace Server ())Execule | @Cancel |

3 In the Easy Settings dialog box, you can specify the following options for
your verification:

¢ Under Settings, in the Precision and Passes fields respectively, you
specify precision (-0) and the level of verification (-to).

¢ Under Parameters, you can configure the following:

- Results directory — You store verification results here
(-results-dir).

13-6

Verifying Code in Visual Studio®

= Function called before main — A function, if any, called before all
functions (-function-call-before-main)

- Main generator write variables — The type of initialization for
global variables (-main-generator-writes-variables).

= Class analysis tab — By default, enables the class analysis with
default options: the class to analyze (-class-analyzer) and
associated options which can change the behavior of the analysis
(-class-only and -class-analyzer).

= File analysis tab — Where you choose a file analysis with associated
option (-main-generator-calls).

= Main analysis tab — Where you choose a partial integration analysis
by choosing the name of the “main” (-main).

¢ Under Scope, you can modify the list of files and classes to verify.

For information on how to choose your options, see “Options Description” in
the PolySpace Products for C++ Reference Guide.

Note In the PolySpace Launcher window, you configure options that
you cannot set in the Easy Settings dialog box. See “Setting Standard
PolySpace Options” on page 13-11.

4 Click Execute to start the verification.

13-7

1 3 Using PolySpace® Software in Visual Studio®

Verifying Classes
In the Easy Settings dialog box, you can verify a C++ class by modifying the
scope option.

To verify a class:

1 In the Visual Studio Solution Explorer, right-click a file and select
PolySpace Verification.

32 IHM - Microsoft ¥isual Studio |_ (O] x|
File Edit ‘iew Project Buld Debug PolySpace Tools Window Community Help
EYRNEHRAr=A ™ - NI EEN- -0 - BB | b Debug Win3z - | 3
BRro|SF=2oeaa
/ﬁlglnit.cpp
I(Glnhal Scope) j I
/¢ DlgInit.cpp : implementation £ile | J Solution THM' 1 project)
Iy 24| = 54 THM

1 Header Files
+- |1 Resource Filzs
= [source Files

#include "stdafx.h"

#?nc lude "IHM.h" | | . & Calarminfo.cop
flinclude "DlgInit.h" - & CPasswi.cpp
- (,:]
El#ifdef DERUG C:] Digiessage) = PolySpace Yerification
#define new DEBUG_NEW c.:] EditCalar.cf =
#undef THIZ FILE Amcpp | O P
—static char THIS_FILE[] = _ FILE_ : _a IHM.rc Open With...
fendif - €+ IHMDIg. cpp
- €] [HMDIgalar =
FELGEEEE RS E SRR R o 6 IHMDIgCon) & Compile
/¢ DlgInit dialog - €] IHMInt.cpp
Cj IHMMy. cpp)
FELEEEEET T DT ET ISP E i PR iiiisyd - G IMPes.cop - cut

/¢ DlgInit dialog zj] i:m?ita.cp 2
> .

B ReadMe.tx] X Remove
C:] SelList.cpp

Wiew Code

Exchude From Project

Copy

DlgInit::DlygInit (CStriny *Mess, c:] ShaticColor Rename
int nb3ec, C:] StdAfx.cpp| by Properties
EQOL * finAttente, & ¥PRRep.cpB
dlgMessage bTon, éga taolib, lib
= CWnd*® pParent /*=NU 683 sedr b4 _mse, %86.lib
: CDialog(DlgInit::IDD, pParent)
i
A/LLAFE DATA INIT(DlgInit)
//YYAFE DATA INIT =
1| | _»l_l 3 Salution Explorer]'chlass Wiew | SFProperties | PalySpace Log
Ready 4

The Easy Settings dialog box opens.

13-8

Verifying Code in Visual Studio®

_lolx|

Settings

Precision |D2 j
=l

Passes IPassZ [Software Safety Analysiz level 2)

Parameters
. Results directory |C:\Resu|ts'\hash_2005_3 |
" Function called before main | |
Main generator write variables IUninit j
Class analysis File analysis | Main analysis
Class j
Class analyzer calls IUnused j
[¥] Class only
Scope

hiWisual Studic\Example Projects\IhmPes\IHMInt.cpp
h:Wisual Studio\Example Projects\IhmPecs\IHMInt.h

[v [+

0 Send to PolySpace Server ())Execule | @Cancel |

2 In the Scope window, click i‘

The Select Files and Classes dialog box opens.

13-9

1 3 Using PolySpace® Software in Visual Studio®

13-10

o

Files Clazzes I

Clazs I Scope I
wechor _wectar_

_rob_matris_ _rob_matris_
rotation _rotation_
Calarrmltern Calarmltem
Célarmlnfo Calarmlnfo
CCompensation CCompenzation
CPaszgwd CPazs'wd

CPosition CPosition

CRepere CRepere

CRobat CRobat

Ciliglrit Cilglnit

CDIgkessage CDIgkessage
CEditColor CEditCoalor
CIHMApp CIHMApp

q q
IHMDlgdlarmes IHMDlgdlarmes
CEdSting CEdString
IHMDIgConfig IHMD1gConfig
CIHMInterface CIHMInterface
CIHM CIHMbw
_PCS_TAO_ _PCS_TAOQ_
|HM Site IHMSite
CSellist CSellist
StaticCaolor StaticCaolor

add | Cancel |

3 Select the classes that you want to analyze, then click Add.
4 In the Easy Settings dialog box, click Execute to start the verification.

Verifying an Entire Project

You can verify an entire project only through the PolySpace Launcher (select
PolySpace > Launcher).

For information on using the PolySpace Launcher , see Chapter 7, “Running a
Verification” in the PolySpace Products for C++ User Guide.

Verifying Code in Visual Studio®

Setting Standard PolySpace Options

In the PolySpace Launcher window, you specify PolySpace verification options
that you cannot set in the Easy Settings dialog box.

To open the PolySpace Launcher window, select PolySpace > Launcher.
The software opens the PolySpace Launcher window using thelast
configuration (.cfg) file updated in Visual Studio. The software does not
check the consistency of this configuration file with the current project, so it
always displays a warning message. This message indicates that the .cfg
file used by the PolySpace Launcher does not correspond to the .cfg file

of the current project.

For information on how to choose your options, see “Options Description” in
the PolySpace Products for C++ Reference Guide.

13-11

13 Using PolySpace® Software in Visual Studio®

The Configuration File and Default Options

Some options are set by default while others are extracted from the Visual
Studio project and stored in the associated PolySpace configuration file.

¢ The following table shows Visual Studio options that are extracted
automatically, and their corresponding PolySpace options:

Visual Studio Option PolySpace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/FX -support-FX-option-results

/Zp[1,2,4,8,16] -pack-alignment-value
[1,2,4,8,16]

® Source and include directories (-I) are also extracted automatically from
the Visual Studio project.

e Default options passed to the kernel depend on the Visual Studio release:
-dialect Visual7.1 (or -dialect visual8) -0S-target Visual
-target 1386 -desktop

13-12

Verifying Code in Visual Studio®

Monitoring a Verification

Once you launch a verification, you can follow its progress in the PolySpace
Log view.

Compilation errors are highlighted as links. Click a link to display the file
and line that produced the error.

%

File Edit Wiew Proje Build Debug PolySpace Tools Window Community Help
H-E-E -l | % -0 - BB | b Debug - Win3z - | B
b ar |EEE|S 2|3 8 &5 Rp

IHM - Microsoft Yisual f__i__ltudio
i

1]

_~DlgInit.cpp - X
I(Glohal Scope) j I -
=4 DlgInitc.cpp implementation fileT

i

#include "stdafx.h"
#include "IHM.hL"
f#include "DlgInit.h™

O #ifdef _DEBUG

#define new DEBUG_NEV

#undef THIZ_FILE

-static char THIS FILE[] = _ FILE :
Hendif

FEEEEFETEE i iirdiddiridiidririiidiiid
4 Dlglnit dialog

FEEEETETETETdTirdiddiiddidiiii il
/4 DlgInit dialog

Dlglnit::Dlglnit (C3tring *Mess,
int nbh3ec,
EOOL * finlAttente,
dlgMes=sage bTon,
= CWnd* pParent /=M1
Chialog(Dlglnic::IDD, pParent)

/f{{AFE_DATL INIT(DlgInit)
/¥y AFE DATA INIT

| of

Ready

BEEHG Ol e-

|<|

Starting st Jan 23, 2008 32714

£

#% Vizual C++ § source compliance checking
e

-D__grnuc_va_list=va_list -0_POSI_SOURCE
D STL_CLASS PARTIAL _SPECIALIZATICON

tsrcet 1356
Weritying Visual C++ & sources ..
weritying Dlginit cpp

OS-target wisual implies: -D__STRICT_ANSI__ -D__inline__=inline -D__signed__=signed

-include=C:\PolySpacePoly SpaceF orCandCPP_R2005a0 erifiercppincludeiy:

"o IMM TP filestsrunstroiDesktopilbmPes\Digini cpp”, line 60 etror: nonstandard form for t

2 errors detected in the compilation of "Dlginit.cpp®.

--- Wetifier has detected compilation error(s) in the code. ---
-—- Pleaze correct them and lsunch the analysis again. -

Failure at: Jan 23, 2008 32721
L=zer time for polyspace-cpp: 6.8real, 6.8 + 0s
Exiting because of previous error

s

**: End of PolySpace Verifier analysis
ax

< |

{00111, (WORD)O, (WWORD)1 208, (WORD1 208, AfxSigCmd_v, (static_casts AFX_Ply
h

RN TProfilesierunstroiDesktoniibmPesiDiging cpp”, line B1: error; nonstandard form for
1 0:x01 11, QAORDND, (WORDN1 208, (WIORDT 209, AfxSigCmd_vy, (static_cast= AFK_Ph
n

b

|The analysis has been successfully done

L“ﬂSolution Explarer |£% Class Yiew |§Properties @ PolySpace Lag

4

13-13

1 3 Using PolySpace® Software in Visual Studio®

13-14

If the verification is being carried out on a server, use the PolySpace Spooler
to follow the verification progress. Select PolySpace > Spooler, which opens
the PolySpace Queue Manager Interface dialog box.

To stop a verification, on the PolySpace Log toolbar, click X . For a server
verification, this option works only during the compilation phase, before the
verification is sent to the server. After the compilation phase, you can select
PolySpace > Spooler and in the PolySpace Queue Manager Interface dialog
box, stop the verification.

For more information on the PolySpace Spooler, see “Managing Verification
Jobs Using the PolySpace Queue Manager” on page 7-7 in the PolySpace
Products for C++ User Guide.

Verifying Code in Visual Studio®

Reviewing Verification Results in Visual Studio

Select PolySpace > Viewer to open the Viewer with the last available
results. If verification has been carried out on a server, download the results
before opening the Viewer.

For information on reviewing and understanding PolySpace verification
results, see Chapter 9, “Reviewing Verification Results” in the PolySpace
Products for C++ User Guide.

Using the PolySpace Spooler

You can use the PolySpace spooler to manage jobs that are run on remote
servers. To open the spooler, select PolySpace > Spooler .

For more information, see “Managing Verification Jobs Using the PolySpace

Queue Manager” on page 7-7 in the PolySpace Products for C++ User
Guide.

13-15

13 Using PolySpace® Software in Visual Studio®

13-16

Using PolySpace Software
in the Eclipse IDE

14 Using PolySpace® Software in the Eclipse™ IDE

14-2

Verifying Code in the Eclipse IDE

In this section...

“Creating an Eclipse Project” on page 14-3
“Setting Up PolySpace Verification with Eclipse Editor” on page 14-4
“Launching Verification from Eclipse Editor” on page 14-6

“Reviewing Verification Results from Eclipse Editor” on page 14-6

“Using the PolySpace Spooler” on page 14-7

You can apply the powerful code verification of PolySpace software to code that
you develop within the Eclipse Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Eclipse™ editor to create an Eclipse project and develop code
within your project.

2 Set up the PolySpace verification by configuring analysis options and
settings.

3 Start the verification and monitor the process.

4 Review the verification results.

Install the PolySpace plug-in for Eclipse IDE before you verify code in Eclipse
IDE. For more information, see “PolySpace Plug-In Requirements” and
“Installing the PolySpace C/C++ Plug-In for Eclipse IDE” in the PolySpace
Installation Guide.

Once you have installed the plug-in, in the Eclipse editor, you have access to:

¢ A PolySpace menu

¢ Toolbar buttons you use to launch a verification and open the PolySpace
spooler

¢ PolySpace Log and PolySpace Setting views

Verifying Code in the Eclipse™ IDE

[T - |

H

{3 BT £ o B B3 R 5 o S o 3 R B e 3 S e e B 3 g B 3 e 3 R 3 i o 2 R 3 R R B3 R B R R

z > Demo_C
B35 Demo_Cpp

il Indludes

-z Debug

analyzer.cpp
[h] analyzer b
controller.cpp
@ controller.h
global_c.cpp
@ global_c.h

- [h] icontraller.h
<[] indude.h
initializations. cpp
main. cpp
matrix,cpp
matrix.h

multiderived.cpp
[multiderived.h
receiver.cpp
@ receiver.h
sanalogic.cpp
@ sanalogic.h
sensitivity.cpp
-] sensitivity.h
@ sensor.h
simulator. cpp
@ simulator.h
@ snumeric.h
-[A] ssequent.h
tasking.cpp
tasks.cpp

[h] tasks.h
fraining.cpp
@ training.h

& C/C++ - Demo_Cpp/sanalogic. pse Platform 1ol x]
File Edit Refactor Navigate Search Project Run | PolySpace Window Help
- o . J ~2 start PolySpace Verification Ctrl4+6 = J I3 . 58 . = e . =i [cicr+
- = €039 5top Local Verification =0 ==
(B = Configure Project o= Outiin &2 MEkET
B[& | & 3 Open Spoer | BRe|as”
- # [i] open Verification Results # _SANALOGIC_H
N = sensorh
Show PolySpace Log view B~ @ sanalogic
Show PolySpace Settings view - @ SAnalogic()
@ ~SAnalogic()
i . @ ° getType() : char®
:?l.a.ss SAnalogic : public Sensor : © Draw(: void
I - @ Typelnfo :int
public:
Shnalogie() { id = _SRNALOGIC: }:
~Shnalogic() {};
char* getType() const { return "Analogic Sensor”; };
void Draw() int val = id * 11: }:
int TypeInfol():
i
fendif
-
[T} ¥
E_\ Problems (E Tasks (ﬁ Properties (—Z PolySpace Log &3 2 polySpace Sethng.q =0
| Compile : 0% | Intermediate | 0% Lewveld | 0% | Lewell 0% | Lewvel2 : 0% | Level3 | 0% | Leweld 0% | Level =4 : 0% %I
q | ;I_I
b Compile Search: 44 | 43
e Detail
_ﬁ Stats Status Description File: [une | co
@ Full Log
=

-[h] tstack.h

J-=<>

Creating an Eclipse Project
If your source files do not belong to an Eclipse project, create one using the

Eclipse editor:

1 Select File > New > C++ Project.

2 Clear the Use default location check box.

14-3

14 Using PolySpace® Software in the Eclipse™ IDE

14-4

3 Click Browse to navigate to the folder containing your source files, for
example, C:\Test\Source_cpp.

4 In the Project name field, enter a name, for example, Demo_Cpp.

5 In the Project Type tree, under Executable, select Empty Project.

6 Under Toolchains, select your installed toolchain, for example, MinGW GCC.
7 Click Finish. An Eclipse project is created.
For information on developing code within Eclipse IDE, refer to
www.eclipse.org.

Setting Up PolySpace Verification with Eclipse Editor
Analysis Options

To specify analysis options for your verification :

1 In Project Explorer, select the project or files that you want to verify.

2 Select PolySpace > Configure Project to open the PolySpace Launcher
for CPP window.

3 Under Analysis options, select your options for the verification process.
4 Save your options.

For information on how to choose your options, see “Options Description” in
the PolySpace Products for C++ Reference Guide

http://www.eclipse.org

Verifying Code in the Eclipse™ IDE

Note The software automatically adds your Eclipse compiler options for
include paths (-I) and symbol definitions (-D) to the list of analysis options.

To view the -I and -D options in the Eclipse editor :

1 Select Project > Properties to open the Properties for Project dialog box.
2 In the tree, under C/C++ General , select Paths and Symbols .

3 Select Includes to view the -I options or Symbols to view the -D options.

Other Settings
In the PolySpace Settings view, specify:

¢ In the Results directory field, the location of your results folder.

® The required Verification level, for example, Level4.

If the item that you select in the Project Explorer is not a class, then you
can also do the following in the PolySpace Settings view:

® Generate a main (if the item that you select does not contain one) by
selecting the Generate a main check box. If you want to change the
default behavior of the main generator, specify advanced settings through
the -main-generator-calls option in the PolySpace Launcher for CPP
window. Select PolySpace > Configure Project to open this window.

® Specify the -function-called-before-main option. In the Startup
function to call field, enter the name of the function that you want to call
before all selected functions in main.

Setting Up Verification for a Single Class

You can use the PolySpace Settings view to configure verification of a
single class:

14-5

14 Using PolySpace® Software in the Eclipse™ IDE

14-6

1 In Project Explorer, select your class.

2 In the PolySpace Settings view, select the Verify the class contents
only check box.

This approach is equivalent to specifying the -class-analyzer and
-class-only options. If necessary, you can use the PolySpace Launcher for
CPP window (PolySpace > Configure Project) to specify other options, for
example, -class-analyzer-calls.

Launching Verification from Eclipse Editor
To launch a PolySpace verification from the Eclipse editor:

1 Select the file, files, or class that you want to verify.

2 Either right-click and select Start PolySpace Verification, or select
PolySpace > Start PolySpace Verification.

You can see the progress of the verification in the PolySpace Log view. If
you see an error or warning, double-click it to go to the corresponding location
in the source code.

To stop verification, select PolySpace > Stop Local Verification.

For more information on monitoring the progress of a verification, see Chapter
7, “Running a Verification” in the PolySpace Products for C++ User Guide.

Reviewing Verification Results from Eclipse Editor

Use the PolySpace Viewer to examine results of the verification:

1 Select PolySpace > Open Verification Results to open the PolySpace
Viewer.

2 If results are available in the specified Results directory, then these
results appear automatically in the Viewer window.

Verifying Code in the Eclipse™ IDE

For information on reviewing and understanding PolySpace verification
results, see Chapter 9, “Reviewing Verification Results” in the PolySpace
Products for C++ User Guide.

Using the PolySpace Spooler

Use the PolySpace spooler to manage jobs running on remote servers. To open
the spooler, select PolySpace > Open Spooler .

For more information, see “Managing Verification Jobs Using the PolySpace
Queue Manager” on page 7-7 in the PolySpace Products for C++ User
Guide.

14-7

14 Using PolySpace® Software in the Eclipse™ IDE

14-8

Glossary

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision

Certain error
See red error

Check
Test performed by PolySpace during verification, colored red, orange,
green or gray in the viewer

Dead Code

Code which is inaccessible at execution time under all circumstances,
due to the logic of the software executed before it.

Development Process
Development process used within a company to progress through the

software development lifecycle.

Green check
Check found to be confirmed as error free.

Gray code
Dead code.

Glossary-1

Glossary

Glossary-2

Imprecision
Approximations made during PolySpace verification, so that data values
possible at execution time are represented by supersets including those
values

mcpu
Micro Controller/Processor Unit

Orange warning
Check found to represent a possible error, which may be revealed on
further investigation.

PolySpace Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
A verification which includes few inconclusive orange checks is said
to be precise

Progress text
Output from PolySpace during verification to indicate what proportion
of the verification has been completed. Could be considered as a “textual
progress bar”.

Red error
Check found to represent a definite error

Review
Inspection of the results produced by a PolySpace verification, using
the Viewer.

Scaling option
Option applied when an application submitted to PolySpace Server
proves to be bigger or more complex than is practical.

Selectivity
The ratio of (green + gray + red) / (total amount of checks)

Glossary

Unreachable code
Dead code

Verification

In order to use a PolySpace tool, the code is prepared and a verification
1s launched which in turn produces results for review.

Glossary-3

Glossary

Glossary-4

A

access sequence graph 9-32
active project
definition 11-3
setting 11-3
analysis options 4-14 4-18
generic targets 4-29
JSF++ compliance 4-22
assistant mode
criterion 9-21
custom methodology 9-24
methodology 9-21
methodology for C 9-21
methodology for C++ 9-22
overview 9-20
reviewing checks 9-25
selection 9-20
use 9-20 9-25

C

call graph 9-31
call tree view 9-13
calling sequence 9-31
cfg. See configuration file
client 1-6 7-2
installation 1-6
verification on 7-22
Client
overview 1-6
coding review progress view 9-13 9-33
color-coding of verification results 1-3 9-15
compile
log 8-6
compile log
Launcher 7-24
Spooler 7-7
compile phase 7-3
compliance
JSF++ 1-2 4-22

composite filters 9-38
configuration file
definition 4-2
contextual verification 2-5
criteria
quality 2-7
custom methodology
definition 9-24

D

data range specifications 2-6
default directory
changing in preferences 4-6
desktop file
definition 4-2
directories
includes 4-9 4-11 4-13
results 4-9 4-11 4-13
sources 4-9 4-11 4-13
downloading
results 9-8
results to UNIX or Linux clients 9-11
unit-by-unit verification results 9-12
DRS 2-6
dsk. See desktop file

expert mode
filters 9-37
composite 9-38
individual 9-37
overview 9-28
selection 9-28
use 9-28

F

files
includes 4-9 4-11 4-13

Index-1

Index

results 4-9 4-11 4-13
source 4-9 4-11 4-13
filters 9-37
alpha 9-38
beta 9-38
custom
modification 9-38 to 9-39
use 9-38 to 9-39
gamma 9-38
individual 9-37
user def 9-38

G

generic target processors
adding 4-28
definition 4-29
deleting 4-31

global variable graph 9-32

H

hardware requirements 8-2
help
accessing 1-8

installation
PolySpace Client for C/C++ 1-6
PolySpace products 1-6
PolySpace Server for C/C++ 1-6

J

JSF C++ compliance
file exclusion 4-25 12-6
rules file 4-23 12-4
JSF++ compliance 1-2
analysis option 4-22
checking 4-22

Index-2

log 12-8

L

Launcher
monitoring verification progress 7-24
opening 4-3
starting verification on client 7-22
starting verification on server 7-3
viewing logs 7-24
window 4-3
overview 4-3
progress bar 7-24
level
quality 2-7
licenses
obtaining 1-6
logs
compile
Launcher 7-24
Spooler 7-7
full
Launcher 7-24
Spooler 7-7
stats
Launcher 7-24
Spooler 7-7
viewing
Launcher 7-24
Spooler 7-7

M

methodology for C 9-21
methodology for C++ 9-22

o

objectives
quality 2-5

Index

P

PolySpace Client
overview 1-6
PolySpace Client for C/C++
installation 1-6
license 1-6
PolySpace In One Click
active project 11-3
overview 11-2
sending files to PolySpace software 11-5
starting verification 11-5
use 11-2
PolySpace products for C++
components 1-6
installation 1-6
licenses 1-6
overview 1-2
related products 1-6
user interface 1-6
PolySpace project model file
creation 4-28
definition 4-28
use 4-27
PolySpace Queue Manager Interface. See Spooler
PolySpace Server
overview 1-6
PolySpace Server for C/C++
installation 1-6
license 1-6
ppm. See PolySpace project model file
preferences
Launcher
default directory 4-6
default server mode 7-3
generic targets 4-28
server detection 8-3
Viewer
assistant configuration 9-22
display columns in RTE view 9-35
procedural entities view 9-13

reviewed column 9-35
product overview 1-2
progress bar
Launcher window 7-24
project
creation 4-2
definition 4-2
directories
includes 4-3
results 4-3
sources 4-3
file types
configuration file 4-2
desktop file 4-2
PolySpace project model file 4-2
saving 4-16
project model file. See PolySpace project model
file

Q

quality level 2-7
quality objectives 2-5 4-18

related products 1-6
PolySpace products for linking to Models 1-7
PolySpace products for verifying Ada
code 1-7
PolySpace products for verifying C code 1-7
reports
generation 9-44 9-47
results
directory 4-9 4-11 4-13
downloading from server 9-8
downloading to UNIX or Linux clients 9-11
opening 9-12
report generation 9-44 9-47
unit-by-unit 9-12

Index-3

Index

reviewed column 9-35
robustness verification 2-5
rte view. See procedural entities view

S

selected check view 9-13

server 1-6 7-2
detection 8-3
information in preferences 8-3
installation 1-6 8-3
verification on 7-3

Server
overview 1-6

source code view 9-13

Spooler
monitoring verification progress 7-7
removing verification from queue 9-8
use 7-7
viewing log 7-7

T

troubleshooting failed verification 8-2

\"

variables view 9-13
verification
Ada code 1-7
C code 1-7
C++ code 1-2
client 7-2
compile phase 7-3
contextual 2-5
failed 8-2
monitoring progress

Index-4

Launcher 7-24
Spooler 7-7
phases 7-3
results
color-coding 1-3
opening 9-12
report generation 9-44 9-47
reviewing 9-8
robustness 2-5
running 7-2
running on client 7-22
running on server 7-3
starting
from Launcher 7-2 7-22

from PolySpace In One Click 7-2 11-5

stopping 7-25

troubleshooting 8-2

with JSF C++ checking 12-7

Viewer

modes
selection 9-17

opening 9-12

window
call tree view 9-13
coding review progress view 9-13
overview 9-13
procedural entities view 9-13
selected check view 9-13
source code view 9-13
variables view 9-13

w

workflow
setting quality objectives 2-5

	toc
	Introduction to PolySpace Products
	Introduction to PolySpace Products
	The Value of PolySpace Verification
	Ensure Software Reliability
	Decrease Development Time
	Improve the Development Process

	How PolySpace Verification Works
	What is Static Verification
	Exhaustiveness

	Product Components
	PolySpace Client for C/C++ Software
	PolySpace Server for C/C++ Software

	Installing PolySpace Products
	Related Products
	PolySpace Products for Verifying C Code
	PolySpace Products for Verifying Ada Code
	PolySpace Products for Linking to Models

	PolySpace Documentation
	About this Guide
	Related Documentation
	The MathWorks Online

	How to Use PolySpace Software
	PolySpace Verification and the Software Development Cycle
	Software Quality and Productivity
	Best Practices for Verification Workflow

	Implementing a Process for PolySpace Verification
	Overview of the PolySpace Process
	Defining Quality Objectives
	Choosing Robustness or Contextual Verification
	Choosing Coding Rules
	Choosing Strict or Permissive Verification Objectives
	Defining Software Quality Levels

	Defining a Verification Process to Meet Your Objectives
	Applying Your Verification Process to Assess Code Quality
	Improving Your Verification Process

	Sample Workflows for PolySpace Verification
	Overview of Verification Workflows
	Software Developers – Standard Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Software Developers – Rigorous Development Process
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Code Acceptance Criteria
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Quality Engineers – Certification/Qualification
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Model-Based Design Users — Verifying Generated Code
	User Description
	Quality Objectives
	Verification Workflow
	Costs and Benefits

	Project Managers — Integrating PolySpace Verification with Confi
	User Description
	Quality Objectives
	Verification Workflow

	PolySpace Class Analyzer
	Analyzing C++ Classes
	Overview
	Why Provide a Class Analyzer

	How the Class Analyzer Works
	Overview
	Sources to be Verified
	Architecture of the Generated main
	Log File
	Characteristics of a Class and Messages in the Log File
	Behavior of Global variables and members
	Global Variables
	Data Members of Other Classes

	Methods and Class Specificities
	Template
	Abstract Classes
	Static Classes
	Inherited Classes

	Types of Classes
	Simple Class
	Simple Inheritance
	Multiple Inheritance
	Abstract Classes
	Virtual Inheritance
	Other Types of Classes
	Template Class
	Example
	Class Integration

	Setting Up a Verification Project
	Creating a Project
	What Is a Project?
	Project Directories
	Opening PolySpace Launcher
	Specifying Default Directory
	Creating New Projects
	Opening Existing Projects
	Specifying Source Files
	Specifying Include Directories
	Specifying Results Directory
	Specifying Analysis Options
	Configuring Text and XML Editors
	Saving the Project

	Specifying Options to Match Your Quality Objectives
	Quality Objectives Overview
	Choosing Contextual Verification Options
	Choosing Strict or Permissive Verification Options
	Choosing Coding Rules

	Setting Up Project to Check Coding Rules
	PolySpace JSF C++ Checker Overview
	Checking Compliance with JSF++ Coding Rules
	Creating a JSF++ Rules File
	Excluding Files from JSF++ Checking

	Setting Up Project for Generic Target Processors
	Project Model Files
	What Is a PolySpace Project Model File?
	Workflow for Using Project Model Files

	Creating Project Model Files
	Viewing Existing Generic Targets
	Defining Generic Targets
	Deleting a Generic Target
	Common Generic Targets
	Creating a Configuration File from a PolySpace Project Model Fil

	Emulating Your Runtime Environment
	Setting Up a Target
	Target/Compiler Overview
	Specifying Target/Compilation Parameters
	Predefined Target Processor Specifications (size of char, int, f
	Generic Target Processors
	Compiling Operating System Dependent Code (OS-target issues)
	List of Predefined Compilation Flags
	My Target Application Runs on Linux
	My Target Application Runs on Solaris
	My Target Application Runs on Vxworks
	My Target Application Does Not Run on Linux, vxworks nor Solaris

	Ignoring or Replacing Keywords Before Compilation
	Content of the myTpl.pl file
	Perl Regular Expression Summary

	How to Gather Compilation Options Efficiently
	Example

	Applying Data Ranges to External Variables and Stub Functions (D
	Overview of Data Range Specifications (DRS)
	Specifying Data Ranges
	File Format
	Tips
	Example

	Variable Scope
	Performing Efficient Module Testing with DRS
	Reducing Oranges with DRS
	Why Is DRS Most Effective on Module Testing?
	Example

	Preparing Source Code for Verification
	Stubbing
	Stubbing Overview
	Manual vs. Automatic Stubbing
	Deciding which Stub Functions to Provide
	Example
	Summary

	Stubbing Examples
	Example: Specification
	Colored Source Code Example

	Specifying Call Sequence
	Colored Source Code Example
	Example of Call Sequence
	Constraining Data with Stubbing
	Default Behavior of Global Data
	Constraining the Data
	Applying the Technique
	Integer Example

	Recoding Specific Functions

	Preparing Code for Variables
	How are Variables Initialized
	Extern
	Volatile
	Absolute Addressing

	Data and Coding Rules
	Variables: Declaration and Definition
	Declaration
	Definition

	How Can I Model Variable Values External to My Application?

	Preparing Code for Built-in Functions
	Overview
	Stubs of stl Functions
	Stubs of libc Functions

	Types Promotion
	Unsigned Types Promoted to Signed
	Promotion Rules in Operators
	Example

	Running a Verification
	Types of Verification
	Running Verifications on PolySpace Server
	Starting Server Verification
	What Happens When You Run Verification
	Running Verification Unit-by-Unit
	Managing Verification Jobs Using the PolySpace Queue Manager
	Monitoring Progress of Server Verification
	Viewing Verification Log File on Server
	Stopping Server Verification Before It Completes
	Removing Verification Jobs from Server Before They Run
	Changing Order of Verification Jobs in Server Queue
	Purging Server Queue
	Changing Queue Manager Password
	Sharing Server Verifications Between Users
	Security of Jobs in Server Queue
	analysis-keys.txt File
	Example:
	Sharing Verifications Between Accounts
	Magic Key to Share Verifications
	If analysis-keys.txt File is Lost or Corrupted

	Running Verifications on PolySpace Client
	Starting Verification on Client
	What Happens When You Run Verification
	Monitoring the Progress of the Verification
	Stopping Client Verification Before It Completes

	Running Verifications from Command Line
	Launching Verifications in Batch
	Managing Verifications in Batch

	Troubleshooting Verification Problems
	Verification Process Failed Errors
	Overview
	Hardware Does Not Meet Requirements
	You Did Not Specify the Location of Included Files
	PolySpace Software Cannot Find the Server
	Limit on Assignments and Function Calls

	Compile Errors
	Overview
	Examining the Compile Log
	Includes
	Specific Keyword or Extended Keyword
	Specific Keyword
	Non ANSI Keywords

	Initialization of Global Variables

	Dialect Issues
	ISO versus Default Dialects
	CFront2 and CFront3 Dialects
	Variable Scope Issues
	“bool” Issues

	Visual Dialects
	Import Directory
	pragma Pack

	GNU Dialect
	Partial Support
	Syntactic Support Only
	Not Supported
	Examples
	Example 1: _asm_volatile_ keyword
	Example 2: Anonymous Structure

	Link Messages
	STL Library C++ Stubbing Errors
	Lib C Stubbing Errors
	Extern C Functions
	Functional Limitations on Some of Stubbed Standard ANSI Function

	Troubleshooting Using the Preprocessed .ci Files
	Overview
	Example of ci File
	Troubleshooting Methodology

	Reducing Verification Time
	Factors Impacting Verification Time
	Displaying Verification Status Information
	Techniques for Improving Verification Performance
	Standard Scaling Options Flow Chart
	Alias Complexity Flow Chart

	Turning Antivirus Software Off
	Tuning PolySpace Parameters
	Impact of Parameter Settings
	Recommended Parameter Tuning

	Subdividing Code
	An Ideal Application Size
	Benefits of Subdividing Code
	Possible Issues with Subdividing Code
	Recommended Approach
	Selecting a Subset of Code
	Example 1
	Example 2
	Example 3

	Reducing Procedure Complexity
	Reducing Task Complexity
	Reducing Variable Complexity
	Choosing Lower Precision

	Obtaining Configuration Information
	Removing Preliminary Results Files

	Reviewing Verification Results
	Before You Review PolySpace Results
	Overview: Understanding PolySpace Results
	Why Gray Follows Red and Green Follows Orange
	Summary

	The Message and What It Means
	Explanation
	Summary

	The C++ Explanation
	Summary

	Opening Verification Results
	Downloading Results from Server to Client
	Downloading Results to UNIX or Linux Clients
	Downloading Results from Unit-by-Unit Verifications
	Opening Verification Results
	Exploring the Viewer Window
	Overview
	Procedural Entities View

	Selecting Viewer Mode
	Setting Character Encoding Preferences

	Reviewing Results in Assistant Mode
	What Is Assistant Mode?
	Switching to Assistant Mode
	Selecting the Methodology and Criterion Level
	Exploring Methodology for C++
	Defining a Custom Methodology
	Reviewing Checks
	Saving Review Comments

	Reviewing Results in Expert Mode
	What Is Expert Mode?
	Switching to Expert Mode
	Selecting a Check to Review
	Displaying the Call Sequence for a Check
	Displaying the Access Sequence for Variables
	Tracking Review Progress
	Making the Reviewed Column Visible
	Filtering Checks
	Types of Filters
	Individual Filters
	Composite Filters
	Custom Filters

	Creating a Custom Filter
	Saving Review Comments

	Importing and Exporting Review Comments
	Reusing Review Comments
	Exporting Review Comments to Other Verification Results
	Importing Review Comments from Previous Verifications

	Generating Reports of Verification Results
	PolySpace Report Generator Overview
	Generating Verification Reports
	Automatically Generating Verification Reports
	Generating Excel Reports

	Using PolySpace Results
	Review Runtime Errors: Fix Red Errors
	Using Range Information in the Viewer
	Viewing Range Information
	Interpreting Range Information
	Diagnosing Errors with Range Information

	Red Checks Where Gray Checks were Expected
	Potential Side Effect of a Red Error
	Why Review Dead Code Checks
	Functional Bugs in Gray Code
	Structural Coverage

	Reviewing Orange Checks
	Integration Bug Tracking

	Managing Orange Checks
	Understanding Orange Checks
	What is an Orange Check?
	Sources of Orange Checks
	Potential Bug
	Inconclusive Verification
	Data Set Issue
	Basic Imprecision

	Too Many Orange Checks?
	Do I Have Too Many Orange Checks?
	How to Manage Orange Checks

	Reducing Orange Checks in Your Results
	Overview: Reducing Orange Checks
	Applying Coding Rules to Reduce Orange Checks
	Improving Verification Precision
	Balancing Precision and Verification Time
	Setting the Analysis Precision Level
	Setting Software Safety Analysis Level
	Example: Orange Checks and Software Safety Analysis Level
	Other Options that Can Improve Precision

	Stubbing Parts of the Code Manually
	Manual vs. Automatic Stubbing
	Stubbing Example
	Emulating Function Behavior with Manual Stubs
	Example
	Reducing Orange Checks with Empty Stubs

	Considering Contextual Verification
	Considering the Effects of Application Code Size

	Reviewing Orange Checks
	Overview: Reviewing Orange Checks
	Defining Your Review Methodology
	Performing Selective Orange Review
	Importing Review Comments from Previous Verifications
	Performing an Exhaustive Orange Review
	Cost of Exhaustive Orange Review
	Exhaustive Orange Review Methodology
	Inconclusive Verification and Code Complexity
	Resolving Orange Checks Caused by Basic Imprecision

	Day to Day Use
	PolySpace In One Click Overview
	Using PolySpace In One Click
	PolySpace In One Click Workflow
	Setting the Active Project
	Launching Verification
	Using the Taskbar Icon

	JSF C++ Checker
	PolySpace JSF C++ Checker Overview
	Using the PolySpace JSF C++ Checker
	Setting Up JSF++ Checking
	Activating the JSF C++ Checker
	Creating a JSF++ Rules File
	Excluding Files from JSF++ Checking

	Running a Verification with JSF++ Checking
	Starting the Verification
	Examining the JSF Log

	Supported Rules
	Code Size and Complexity
	Environment
	Libraries
	Pre-Processing Directives
	Header Files
	Style
	Classes
	Namespaces
	Templates
	Functions
	Comments
	Declarations and Definitions
	Initialization
	Types
	Constants
	Variables
	Unions and Bit Fields
	Operators
	Pointers and References
	Type Conversions
	Flow Control Standards
	Expressions
	Memory Allocation
	Fault Handling
	Portable Code

	Rules Not Checked
	Code Size and Complexity
	Rules
	Environment
	Libraries
	Header Files
	Style
	Classes
	Namespaces
	Templates
	Functions
	Comments
	Initialization
	Types
	Unions and Bit Fields
	Operators
	Type Conversions
	Expressions
	Memory Allocation
	Portable Code
	Efficiency Considerations
	Miscellaneous
	Testing

	Using PolySpace Software in Visual Studio
	Verifying Code in Visual Studio
	Creating a Visual Studio Project
	Setting Up and Starting a PolySpace Verification in Visual Studi
	Verifying Classes
	Verifying an Entire Project
	Setting Standard PolySpace Options
	The Configuration File and Default Options

	Monitoring a Verification
	Reviewing Verification Results in Visual Studio
	Using the PolySpace Spooler

	Using PolySpace Software in the Eclipse IDE
	Verifying Code in the Eclipse IDE
	Creating an Eclipse Project
	Setting Up PolySpace Verification with Eclipse Editor
	Analysis Options
	Other Settings
	Setting Up Verification for a Single Class

	Launching Verification from Eclipse Editor
	Reviewing Verification Results from Eclipse Editor
	Using the PolySpace Spooler

	Glossary
	Index

	tables
	Software Quality Levels
	Examples of Common Run-Time Errors
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny

